• Title/Summary/Keyword: 역학적 거동특성

Search Result 606, Processing Time 0.026 seconds

The Design Guidelines for the Tensile Behavior of Ultra-High Performance Concrete (초고성능 콘크리트의 인장거동 설계기준 정립에 관한 연구)

  • Kang, Su-Tae;Joh, Chang-Bin;Park, Jong-Sup;Park, Jung-Jun;Ryu, Gum-Sung;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.361-364
    • /
    • 2008
  • To design structures with Ultra High Performance Concrete (UHPC), it is necessary to estimate the mechanical properties first of all. The most attractive characteristics of UHPC are the considerable tensile strength and behavior. Therefore the most important thing in order to properly design UHPC structures is to establish the constitutive model to represent the tensile behavior of UHPC. In this study, it was tried to find out the tensile behavior of UHPC by experiments and analyses. Through comparisons with the French SETRA/AFGC recommendations and the Japanese recommendations for the Ultra High-Strength Fiber-Reinforced Concrete Structures, a reasonable model which could represent the tensile stress-strain relationship in the structural design was proposed

  • PDF

Grain-Based Distinct Element Modelling of the Mechanical Behavior of a Single Fracture Embedded in Rock: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 통한 결정질 암석 내 균열의 역학적 거동 모델링: 국제공동연구 DECOVALEX-2023 Task G(Benchmark Simulation))

  • Park, Jung-Wook;Park, Chan-Hee;Yoon, Jeoung Seok;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.573-590
    • /
    • 2020
  • This study presents the current status of DECOVALEX-2023 project Task G and our research results so far. Task G, named 'Safety ImplicAtions of Fluid Flow, Shear, Thermal and Reaction Processes within Crystalline Rock Fracture NETworks (SAFENET)' aims at developing a numerical method to simulate the fracture creation and propagation, and the coupled thermohydro-mechanical processes in fracture in crystalline rocks. The first research step of Task G is a benchmark simulation, which is designed for research teams to make their modelling codes more robust and verify whether the models can represent an analytical solution for displacements of a single rock fracture. We reproduced the mechanical behavior of rock and embedded single fracture using a three-dimensional grain-based distinct element model for the simulations. In this method, the structure of the rock was represented by an assembly of rigid tetrahedral grains moving independently of each other, and the mechanical interactions at the grains and their contacts were calculated using 3DEC. The simulation results revealed that the stresses induced along the embedded fracture in the model were relatively low compared to those calculated by stress analysis due to stress redistribution and constrained fracture displacements. The fracture normal and shear displacements of the numerical model showed good agreement with the analytical solutions. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated using various experiments in a further study.

Prediction of Thermo-mechanical Behavior for CNT/epoxy Composites Using Molecular Dynamics Simulation (분자동역학 시뮬레이션을 이용한 CNT/에폭시 복합재의 열기계적 거동 예측)

  • Choi, Hoi Kil;Jung, Hana;Yu, Jaesang;Shin, Eui Sup
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.260-264
    • /
    • 2015
  • In this paper, molecular dynamics (MD) simulation was carried to predict thermo-mechanical behaviors for carbon nanotube (CNT) reinforced epoxy composites and to analyze the trends. Total of six models having the volume fractions of CNT from 0 to 25% in epoxy were constructed. To predict thermal behaviors, temperature was increased constantly from 300 to 600 K, and the glass transition temperature ($T_g$) and coefficient of thermal expansion (CTE) analyzed using the relationship between temperature and specific volume. The elastic moduli that represented to the mechanical behaviors were also predicted by constant strain. Additionally, the effects of functionalization of CNT on mechanical behaviors of composite were analyzed. Models were constructed to represent CNTs functionalized by nitrogen doping and COOH groops, and interfacial behaviors and elastic moduli were analyzed. Results showed that the agglomerations of CNTs in epoxy cause by perturbations of thermo-mechanical behaviors, and the functionalization of CNTs improved the interfacial response as well as mechanical properties.

An Experimental Study on the Mechanical Properties of Carbon Fiber Reinforced Concrete under Uni-Axial Compression Loading (탄소섬유보강콘크리트의 일축압축재하시의 역학적 특성에 관한 실험적 연구)

  • 부척량;김화중;이상재
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.3
    • /
    • pp.55-64
    • /
    • 1990
  • With the increasing use of Fiber Reinforced Concrete as a structural material. More information on its mechanical properties is needed. This paper reports the results of experiments on the behavior of Carbon Fiber Reinforced Concrete under monotonic and cyclic compressive loading. The results are that (1) CFRC does improve its compressive strength by adding fibers to a concrete matrix. (2) Adding any fiber to a concrete matrix produced a substaintial change in its stress-strain response. This change is characterized by a significant increase in ductility as described by the descending portion of the stress-strain curve. (3) As compare with plain concrete, the normalized cyclic behavior of CFRC has a much stability. A higher fiber"" content produes a lesser steep descending portion, which results in a higher ductlity of the material.

Mechanical Characteristics of Kaolin-cement Mixture (카올린-시멘트 혼합재료의 공학적 특성)

  • Lee, Kyu-Hwan;Lee, Song;Yi, Chang-Tok
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.113-125
    • /
    • 2002
  • Ground improvement technique of cement stabilization via Deep Soil Mixing with dry cement is gaining popularity, particularly in Japan and other parts of Southeast Asia and in Scandinavia. Cement can be mixed with deep soft clay deposits, typical of marine environments, to improve the bearing capacity and/or reduce the compressibility of the material so that an otherwise poor site can be developed. However, the strength/deformation behaviour and resulting soil structure of the clay-cement mixture is presently not well understood with respect to both dry and wet mix methods. An extensive laboratory test was carried out to determine the mechanical characteristics of kaolin-cement, with some brief examination of the effects of curing environment. Laboratory tests include triaxial tests, unconfined compression tests, isotropic consolidation testis and oedometer tests. Cement contents up to 10 percent were considered and water curing was employed. Samples were cured for 7 to 112 days while submerged in distilled water. Conventional laboratory tests were also performed. In this paper, the laboratory testing program is described and various sample preparation techniques are discussed. Preliminary triaxial compression test results and trends at varying moisture contents, cement contents, confining pressures and curing times will be presented.

Mechanical Characteristics of Accelerated Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착 잔토를 재활용한 지중전력구조물 뒷채움재의 역학적 특성)

  • Cheon, SeonHo;Jeong, Sangseom;Lee, DaeSoo;Kim, DaeHong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.303-312
    • /
    • 2006
  • This study is to evaluate the mechanical characteristics of flowable backfill and offer a guide line of mixture proportion based on soil types for constructing underground power utilities. Flowable backfill is known as soil-cement slurry, void fill, and controlled low-strength material(CLSM). The benefits of CLSM are reduced equipment costs, faster construction, re-excavation in the future, and the ability to place materials in confined spaces, which are narrow parts or perimeters of underground power cables nearly impossible for compaction. The flowable slurry mixed with 17 soils and 6 accelerated mixtures in the laboratory were evaluated for flowability and unconfined compressive strength to meet the target values of this study.

New Methods for Assessing Liquefaction Potential Based on the Characteristics of Material (재료의 역학적 거동특성에 기초한 액상화 평가방법)

  • Kim, Gyeong-Hwan;Park, In-Jun;Kim, Su-Il
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.205-218
    • /
    • 1998
  • The purpose of this study is to develop and utilize new assessment of liquefaction potential based on DSC(disturbed state concept) and dissipated energy concept. The term liquefaction has suddenly loses its shear strength and behaves like a fluid. Liquefaction has been a source of a major damage during severe earthquake. In this study, the cyclic undrained behavior of Joomoonjin strand is investigated by using an automates triaxial testing device(C. K. Chan type). In order to assess liquefaction potential of saturated strand, DSC method and energy method are applied for the experimental data. The use of DSC method and energy method to define the liquefaction potential is verified through laboratory testis of cyclic triaxial test on saturated sand specimens. Based on the analytical results of DSC method, the relationship between the factor affecting liquefaction characteristics(Dr) and physical properties of the saturated santa(fs and D.) is found. Based on the analytical results of energy method, it is found that the initial liquefaction of rand is related to the significant change in the dissipated energy. Finally, it is shown that the DSC method and energy method can capture the liquefaction mechanism.

  • PDF

Mechanical evolution of radioactive waste repository and rock mass - A review on ANDRA's case - (방사성 폐기물 지층 처분장과 암반의 역학적 특성 변화 - ANDRA의 예 -)

  • Chung, So-Keul;Synn, Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.165-174
    • /
    • 2008
  • Thermo-hydro-chemico-mechanical evolution of the radioactive waste repository and surrounding geological media is one of the key issues for the radioactive waste disposal. This article describes not only the basic context for the site selection but also a reasonable strategy for the repository related research based on the results of the French repository project carried out by ANDRA (National radioactive waste management agency). To have some alternatives for the determination of a preferable depth and geological media, it would be recommendable to establish a database system. The curing process of the fractures or microfissures in the EDZ (Excavation Disturbed Zone) during operation time has to be examined considering the evolution of the EDZ and the reversibility of the repository. It is prerequisite to carry out a feasibility study and to validate the design concept and design parameters in a properly constructed underground research laboratory (URL) in Korea.

Application of Sacrificial Piles for Scour Countermeasures around Bridge Pier (교각주위의 세굴방지를 위한 희생파일의 적용)

  • 김웅용;최기봉
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2000.06a
    • /
    • pp.229-234
    • /
    • 2000
  • 교량의 교각 및 교대에 대한 세굴의 영향은 많은 학자들의 관심이 되어왔다. 연구의 주된 관심은 세굴에 영향을 미치는 인자들의 역학적인 거동에 대한 것으로써 세굴인자들의 최대 영향 및 최대세굴심을 예측하는 적절한 방법들이 연구되었다. 특히, 교각에서 일어나는 세굴은 이동하는 유체의 역학적인 상호작용과 불균등하게 분포된 하상입자들을 포함하는 3차원적인 문제로서, 그 현상이 대단히 복잡하여 하천흐름과 하상재료의 특성 및 교각의 형상과 같은 여러 요소에 의해 지배를 받기 때문에 세굴에 대한 정확한 예측은 매우 어렵다. 따라서, 복잡한 세굴인자들로 인해 세굴에 관한 연구는 주로 실험에 의하여 이루어지고 있는 실정이다. (중략)

  • PDF

Evaluation of thermal-hydro-mechanical behavior of bentonite buffer under heating-hydration condition at disposal hole (처분공 가열-수화 조건에서 벤토나이트 완충재의 열-수리-역학적 거동 특성 평가)

  • Yohan Cha;Changsoo Lee;Jin-Seop Kim;Minhyeong Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.175-186
    • /
    • 2023
  • The buffer materials in disposal hole are exposed to the decay heat from spent nuclear fuels and groundwater inflow through adjacent rockmass. Since understanding of thermal-hydro-mechanical-chemical (T-H-M-C) interaction in buffer material is crucial for predicting their long-term performance and safety of disposal repository, it is necessary to investigate the heating-hydration characteristics and consequent T-H-M-C behavior of the buffer materials under disposal conditions considering geochemical factors. In response, the Korea Atomic Energy Research Institute developed a laboratory-scale 'Lab.THMC' experiment system, which characterizes the T-H-M behavior of buffer materials under different geochemical conditions by analyzing heating-hydration process and stress changes. This technical report introduces the detail design of the Lab.THMC system, summarizes preliminary experimental results, and outlines future research plans.