• Title/Summary/Keyword: 역병

Search Result 353, Processing Time 0.024 seconds

'Arihyang', a Strawberry Variety with Highly Firm and Large-Sized Fruit for Forcing Culture (촉성재배용 고경도 대과성 딸기 품종 '아리향')

  • Kim, Dae-Young;Kim, Seung Yu;Huh, Yun-Chan;Yoon, Moo Kyung;Lee, Sun Yi;Moon, Ji-Hye;Kim, Dae Hyun
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.497-503
    • /
    • 2018
  • A strawberry variety 'Arihyang' was derived as an artificial cross between 'Tochiotome' and 'Seolhyang' in 2014. The seedling and line selections were conducted from 2014 to 2015. Preliminary and advanced yield trials of '14-5-5,' which was the final selected line, were conducted from 2015 to 2017. 'Arihyang' is suitable for forced cultivation and has strong plant vigor, uniformly large-sized fruit, and a high yield compared to those of the check variety, 'Seolhyang' and 'Maehyang.' Especially, vitamin C was at a significant level, which was approximately 15% higher than that of 'Seolhyang.' The average number of flowers per first flower cluster was 10.5, which could reduce the labor of thinning fruit. Its fruit has a conical shape, dark red color, and glossy skin. The fruit was of good quality but has recommendations for harvest at the fully ripened stage. 'Arihyang' has intermediate resistant to phytophthora crown rot, but is susceptible to powdery mildew, gray mold, anthracnose, and fusarium wilt. It is reguired to manage major diseases and pests using optimum cultivation techniques and chemical control.

Plant Growth Promotion and Biocontrol Potential of Various Phytopathogenic Fungi Using Gut Microbes of Allomyrina dichotoma Larva (장수풍뎅이 유충의 장내 미생물을 이용한 다양한 식물 균류병의 생물적 방제 및 생장촉진)

  • Kim, Joon-Young;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.210-221
    • /
    • 2020
  • This research was executed to select beneficial antagonists from digestive organ of Allomyrina dichotoma larva that can be put on environment friendly control against phytopathogenic fungi. We screened 38 bacterial strains inhibiting mycelial growth against eight plant pathogens through dual culture assay. The 10 strains among 38 bacterial strains were selected as beneficial microbes showing antifungal activity against Botrytis cinerea, Plasmodiophora brassicae, Colletotrichum acutatum and Phytophthora capsici through under greenhouse pot trials. The 10 bacterial strains that shown strongest antifungal activity were classified into 3 genera and 10 species, and identified as the genus Bacillus (DM146, DM152, DH2, and DH16), Paenibacillus (DF30, DH14, and DM142) and Streptomyces (DF137, DM48, and DH92) by morphological characteristics and 16s rRNA gene sequence. The 10 bacterial strains had solubilizing activity of insoluble phosphates, production of IAA (indole-3-acetic acid), β-1,3-glucanase and protease. Among the 10 bacterial strains, DM152 strain was produced significant enhancement of all growth parameters of chili pepper and tomato seedlings under greenhouse condition. Thus, this study demonstrated that gut microbes of Allomyrina dichotoma larva will be useful as a potential biocontrol agent against plant pathogens and biofertilizer.

PCR-based markers for discriminating Solanum demissum were developed by comparison of complete chloroplast genome sequences of Solanum species (가지속 식물의 엽록체 전장유전체 비교를 통한 PCR 기반의 Solanum demissum 특이적 분자마커 개발)

  • Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.18-25
    • /
    • 2021
  • Solanum demissum is one of the wild Solanum species originating from Mexico. It has wildly been used for potato breeding due to its resistance to Phytophthora infestans. S. demissum has an EBN value of four, which is same as that of S. tuberosum, so that it is directly crossable for breeding purposes with the cultivated tetraploid potato (S. tuberosum). In this study, the chloroplast genome sequence of S. demissum obtained by next-generation sequencing technology was described and compared with those of seven other Solanum species to develop S. demissum-specific markers. Thetotal sequence length of the chloroplast genome is 155,558 bp, and its structural organization is similar to those of other Solanum species. Phylogenetic analysis with ten other Solanaceae species revealed that S. demissum is most closely grouped with S. hougasii and S. stoloniferum followed by S. berthaultii and S. tuberosum. Additional comparison of the chloroplast genome sequence with those of seven other Solanum species revealed two InDels specific to S. demissum. Based on these InDels, two PCR-based markers for discriminating S. demissum from other Solanum species were developed. The results obtained in this study will provide an opportunity to investigate more detailed evolutionary and breeding aspects in Solanum species.

PCR-based markers to select plastid genotypes of Solanum acaule (Solanum acaule 색소체 유전자형 선발을 위한 특이적 분자마커 개발)

  • Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.178-186
    • /
    • 2022
  • The tetraploid Solanum acaule is a wild potato species from Bolivia widely used for potato breeding because of its diverse attractive traits, including resistance to frost, late blight, potato virus X, potato virus Y, potato leafroll virus, potato spindle tuber viroid, and cyst nematode. However, the introgression of useful traits into cultivated potatoes via crossing has been limited by differences in endosperm balance number between species. Somatic fusion could be used to overcome sexual reproduction barriers and the development of molecular markers is essential to select proper fusion products. The chloroplast genome of S. acaule was sequenced using next-generation sequencing technology and specific markers for S. acaule were developed by comparing the obtained sequence with those of seven other Solanum species. The total length of the chloroplast genome is 155,570 bp, and 158 genes were annotated. Structure and gene content were very similar to other Solanum species and maximum likelihood phylogenetic analysis with 12 other species belonging to the Solanaceae family revealed that S. acaule is very closely related to other Solanum species. Sequence alignment with the chloroplast genome of seven other Solanum species revealed four InDels and 79 SNPs specific to S. acaule. Based on these InDel and SNP regions, one SCAR marker and one CAPS marker were developed to discriminate S. acaule from other Solanum species. These results will aid in exploring evolutionary aspects of Solanum species and accelerating potato breeding using S. acaule.

Infection and Mutation - On the H. P. Lovecraft's fiction and "Project LC. RC" (감염과 변이 -H. P. 러브크래프트의 소설과 『Project LC. RC』에 대하여)

  • Bok, Do-Hoon
    • Journal of Popular Narrative
    • /
    • v.27 no.2
    • /
    • pp.13-44
    • /
    • 2021
  • This article describes the fear of infection through the Covid19 pandemic and the rapid phase change of human species with H. P. Lovecraft's fiction and "Project LC. RC". Pandemic and climate change, which can be called global weirding, fundamentally question the status and history of human species in the ecosystem. The horror creature and cosmological indifferentism in Lovecraft's weird fiction are contemporary in that they help shed light on today's global weirding. But Lovecraft's racism allows him to ask more fundamental questions about the logjam of his cosmic horror. "Project LC. RC" are a Korean writers's works of cultural variation that rewrites controversial racism and misogyny in Lovecraft's fiction. Such variation becomes the task of creating a mutation in Lovecraft as it becomes infected with the affection of Lovecraft's writing. This article first noted the creative power of Lovecraft's fiction that induces such a mutation. And under this premise, this article wanted to reveal the meaning of Lee Seo young, Eun rim, and Kim Bo young's recreates of Lovecraft's fiction through the analysis of images and motifs of abject, plant creature and symbiosis. Specifically, Lovecraft's creature, which evokes phallic fear, turns into an image of an abject embracing and comforting women's despair("I Want You to Stay Low"), a plant creature that provides women with refuge("Color in the Well"), and a creature of care and symbiotic life("A Sea of Plague"). This recreate/rewriting has contemporary significance in that it embodies values such as labor, care, and solidarity in their works. The conclusion noted another power of creative variation in Lovecraft's fiction, which is not reduced to recreate/rewriting.

Chloroplast genome sequence and PCR-based markers for S. cardiophyllum (감자 근연야생종 Solanum cardiophyllum의 엽록체 전장유전체 구명 및 이를 이용한 S. cardiophyllum 특이적 분자마커의 개발)

  • Tae-Ho Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.45-55
    • /
    • 2023
  • The diploid Solanum cardiophyllum, a wild tuberbearing species from Mexico is one of the relatives to potato, S. tuberosum. It has been identified as a source of resistance to crucial pathogens and insects such as Phytophthora infestans, Potato virus Y, Colorado potato beetle, etc. and is widely used for potato breeding. However, the sexual hybridization between S. cardiophyllum and S. tuberosum is limited due to their incompatibility. Therefore, somatic hybridization can introduce beneficial traits from this wild species into the potato. After somatic hybridization, selecting fusion products using molecular markers is essential. In the current study, the chloroplast genome of S. cardiophyllum was sequenced by next-generation sequencing technology and compared with those of other Solanum species to develop S. cardiophyllum-specific markers. The total length of the S. cardiophyllum chloroplast genome was 155,570 bp and its size, gene content, order and orientation were similar to those of the other Solanum species. Phylogenic analysis with 32 other Solanaceae species revealed that S. cardiophyllum was expectedly grouped with other Solanum species and most closely located with S. bulbocastanum. Through detailed comparisons of the chloroplast genome sequences of eight Solanum species, we identified 13 SNPs specific to S. cardiophyllum. Further, four SNP-specific PCR markers were developed for discriminating S. cardiophyllum from other Solanum species. The results obtained in this study would help to explore the evolutionary aspects of Solanum species and accelerate breeding using S. cardiophyllum.

History of Disease Control of Korean Ginseng over the Past 50 Years (과거 50년간 고려인삼 병 방제 변천사)

  • Dae-Hui Cho
    • Journal of Ginseng Culture
    • /
    • v.6
    • /
    • pp.51-79
    • /
    • 2024
  • In the 1970s and 1980s, during the nascent phase of ginseng disease research, efforts concentrated on isolating and identifying pathogens. Subsequently, their physiological ecology and pathogenesis characteristics were scrutinized. This led to the establishment of a comprehensive control approach for safeguarding major aerial part diseases like Alternaria blight, anthracnose, and Phytophthora blight, along with underground part diseases such as Rhizoctonia seedling damping-off, Pythium seedling damping-off, and Sclerotinia white rot. In the 1980s, the sunshade was changed from traditional rice straw to polyethylene (PE) net. From 1987 to 1989, focused research aimed at enhancing disease control methods. Notably, the introduction of a four-layer woven P.E. light-shading net minimized rainwater leakage, curbing Alternaria blight occurrence. Since 1990, identification of the bacterial soft stem rot pathogen facilitated the establishment of a flower stem removal method to mitigate outbreaks. Concurrently, efforts were directed towards identifying root rot pathogens causing continuous crop failure, employing soil fumigation and filling methods for sustainable crop land use. In 2000, adapting to rapid climate changes became imperative, prompting modifications and supplements to control methods. New approaches were devised, including a crop protection agent method for Alternaria stem blight triggered by excessive rainfall during sprouting and a control method for gray mold disease. A comprehensive plan to enhance control methods for Rhizoctonia seedling damping-off and Rhizoctonia damping-off was also devised. Over the past 50 years, the initial emphasis was on understanding the causes and control of ginseng diseases, followed by refining established control methods. Drawing on these findings, future ginseng cultivation and disease control methods should be innovatively developed to proactively address evolving factors such as climate fluctuations, diminishing cultivation areas, escalating labor costs, and heightened consumer safety awareness.

Antifungal activities of coumarins isolated from Angelica gigas and Angelica dahurica against Plant pathogenic fungi (당귀와 백지로부터 분리한 Coumarin계 물질들의 식물병원균에 대한 항균활성)

  • Ryu, Shi-Yong;Kim, Young-Sup;Kim, Heung-Tae;Kim, Seong-Ki;Choi, Gyung-Ja;Kim, Jeoung-Seob;Lee, Seon-Woo;Heor, Jung-Hee;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.3
    • /
    • pp.26-35
    • /
    • 2001
  • In order to search potent antifungal substances from domestic plants, 40 plants cultivated in Korea were collected. After extracting with methanol (MeOH) and concentrating to dryness, the MeOH extracts were screened for in vivo antifungal activity against six plant diseases at a concentration of $2000{\mu}g/mL$. Fourteen extracts showed disease-controlling activity more than 90% against at least one of the 6 plant diseases tested; eight, seven, and three extracts controlled more than 90% the development of rice blast, tomato late blight, and wheat leaf rust, respectively. However, none of the extracts exhibited in vivo antifungal activity more than 90% against rice sheath blight, tomato gray mold, and barley powdery mildew. From the MeOH extracts of Angelica gigas and A. dahurica showing potent controlling activity against rice blast, 1 and 2 antifungal substances, respectively, were isolated by solvent partitioning and column chromatography. The three compounds were identified to be coumarins, namely, decursin, imperatorin, and isoimperatorin, by mass spectrometry and NMR spectroscopy. They were examined for in vitro and in vivo antifungal activities together with umbelliferone (7-bydroxycournarin) and scopoletin (6-methoxy-7-hydroxycoumarin) containing a free hydroxyl group at position 7 to investigate the structure-activity relationship. In vitro, most of 50% growth inhibitory concentrations ($IC_{50}$) were over $200{\mu}g/mL$, indicating that they have relatively weak antifungal activity. The antifungal activity of decursin and scopoletin, containing cyclic alkoxy groups instead of free hydroxyl group at position 7, was stronger than umbelliferone and scopoletin. Especially, decursin and imperatorin showed potent antifungal activities against Pythium ultimum and Magnaporthe grisea, respectively, with $IC_{50}$ values less than $25{\mu}g/mL$. In vivo, decursin and imperatorin showed potent antifungal activity against rice blast, whereas other coumarins hardly controlled the development of 6 plant diseases tested. These results suggest that the antifungal activity of 7-hydroxycoumarin derivative is substantially increased when the hydroxyl group at position 7 is protected by a stable cyclic alkoxy grouping.

  • PDF

Effects of Electrical Conductivity and Rootstock on Initial Growth and Physiological Response of Grafted Pepper (공급양액의 EC와 대목종류가 고추 접목묘의 초기생육과 생리적 반응에 미치는 영향)

  • Oh, Sang-Seok;Oh, Ju-Youl;Kim, Young-Bong;Whang, Hae-Jun;Shon, Gil-Man;Noh, Chi-Woong;Park, Joong-Choon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.377-384
    • /
    • 2009
  • This study was conducted to examine the effects of electrical conductivity (EC) and rootstock on initial growth and physiological response of grafted pepper in protected cultivation. The pepper (Capcicum annuum L.) cultivars 'Nokgwang' was used as scions, and the cultivars used as rootstocks were Capcicum annuum L: 'Kataguruma', 'Conesian hot' and 'Tantan'. The scion cultivar left ungrafted was used as a control. Two experiments were to examine the effects of the EC levels of nutrient solution on the growth and physiological response of grafted pepper, respectively. Nutrient solution was supplied with three level (1.5, 3.0, 5.0dS/m). By the change of nutrient solution EC level, the plant growth of all seedlings decreased with the increase in EC level. grafted seedling was grafted onto rootstock cultivar 'kataguruma' showed higher growth than the other cultivar at the EC 5.0dS/m level. But this result was slightly different by cultivation time (spring and fall). The total N and P concentration were increased with the increase in EC level, but the Ca and Mg concentration were decreased. Photosynthetic rate of ungrafted seedlings decreased at the EC 5.0dS/m level. But there was no difference between EC 1.5 and 3.0dS/m level. Grafted seedlings showed lower photosynthetic rate at the EC 5.0dS/m level. The activity of SOD do not have a uniformly tendency by the EC level. With the EC 5.0dS/m level, the activity of APX attained higher level than the other EC level. Further study will be needed to examine additional cultivation experiment for more variable rootstock, and development of rootstock for salinity tolerance.

In vivo Antifungal Activity of Pyrrolnitrin Isolated from Burkholderia capacia EB215 with Antagonistic Activity Towards Colletotrichum Species (탄저병균에 대하여 길항작용을 보이는 Burkholderia cepacia EB215로부터 분리한 Pyrrolnitrin의 항균활성)

  • Park, Ji-Hyun;Choi, Gyung-Ja;Lee, Seon-Woo;Jang, Kyoung-Soo;Choi, Yong-Ho;Chung, Young-Ryun;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Korean Journal of Mycology
    • /
    • v.32 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • An endophytic bacterial strain EB215 that was isolated from cucumber (Cucumis sativus) roots displayed a potent in vivo antifungal activity against Colletotrichum species. The strain was identified as Burkholderia cepacia based on its physiological and biochemical characteristics, and 16S rDNA gene sequence. Optimal medium and incubation period for the production of antifungal substances by B. cepacia EB215 were nutrient broth (NB) and 3 days, respectively. An antifungal substance was isolated from the NB cultures of B. cepacia EB215 strain by centrifugation, n-hexane partitioning, silica gel column chromatography, preparative TLC, and in vitro bioassay. Its chemical structure was determined to be pyrrolnitrin by mass and NMR spectral analyses. Pyrrolnitrin showed potent disease control efficacy of more than 90% against pepper anthracnose (Colletotrichum coccodes), cucumber anthracnose (Colletotrichum orbiculare), rice blast (Magnaporthe grisea) and rice sheath blight (Corticium sasaki) even at a low concentration of $11.1\;{\mu}g/ml$. In addition, it effectively controlled the development of tomato gray mold (Botrytis cinerea) and wheat leaf rust (Puccinia recondita) at concentrations over $33.3\;{\mu}g/ml$. However, it had no antifungal activity against Phytophthora infestans on tomato plants. Further studies on the development of microbial fungicide using B. cepacia EB215 are in progress.