Effects of Electrical Conductivity and Rootstock on Initial Growth and Physiological Response of Grafted Pepper

공급양액의 EC와 대목종류가 고추 접목묘의 초기생육과 생리적 반응에 미치는 영향

  • Oh, Sang-Seok (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Oh, Ju-Youl (Division of Exportable Crops and Foods Science, Gyeongsangnam-do Agricultural Research & Extension Service) ;
  • Kim, Young-Bong (Division of Exportable Crops and Foods Science, Gyeongsangnam-do Agricultural Research & Extension Service) ;
  • Whang, Hae-Jun (Division of Exportable Crops and Foods Science, Gyeongsangnam-do Agricultural Research & Extension Service) ;
  • Shon, Gil-Man (Division of Exportable Crops and Foods Science, Gyeongsangnam-do Agricultural Research & Extension Service) ;
  • Noh, Chi-Woong (Division of Exportable Crops and Foods Science, Gyeongsangnam-do Agricultural Research & Extension Service) ;
  • Park, Joong-Choon (Department of Horticulture, Gyeongsang National University)
  • 오상석 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 오주열 (경상남도 농업기술원 수출농식품연구과) ;
  • 김영봉 (경상남도 농업기술원 수출농식품연구과) ;
  • 황해준 (경상남도 농업기술원 수출농식품연구과) ;
  • 손길만 (경상남도 농업기술원 수출농식품연구과) ;
  • 노치웅 (경상남도 농업기술원 수출농식품연구과) ;
  • 박중춘 (경상대학교 원예학과)
  • Published : 2009.12.31

Abstract

This study was conducted to examine the effects of electrical conductivity (EC) and rootstock on initial growth and physiological response of grafted pepper in protected cultivation. The pepper (Capcicum annuum L.) cultivars 'Nokgwang' was used as scions, and the cultivars used as rootstocks were Capcicum annuum L: 'Kataguruma', 'Conesian hot' and 'Tantan'. The scion cultivar left ungrafted was used as a control. Two experiments were to examine the effects of the EC levels of nutrient solution on the growth and physiological response of grafted pepper, respectively. Nutrient solution was supplied with three level (1.5, 3.0, 5.0dS/m). By the change of nutrient solution EC level, the plant growth of all seedlings decreased with the increase in EC level. grafted seedling was grafted onto rootstock cultivar 'kataguruma' showed higher growth than the other cultivar at the EC 5.0dS/m level. But this result was slightly different by cultivation time (spring and fall). The total N and P concentration were increased with the increase in EC level, but the Ca and Mg concentration were decreased. Photosynthetic rate of ungrafted seedlings decreased at the EC 5.0dS/m level. But there was no difference between EC 1.5 and 3.0dS/m level. Grafted seedlings showed lower photosynthetic rate at the EC 5.0dS/m level. The activity of SOD do not have a uniformly tendency by the EC level. With the EC 5.0dS/m level, the activity of APX attained higher level than the other EC level. Further study will be needed to examine additional cultivation experiment for more variable rootstock, and development of rootstock for salinity tolerance.

본 연구는 시중에서 판매되는 고추 역병저항성 대목품종을 이용한 시설내 접목재배시 기존의 실생묘와 비교하여 공급양액의 EC 수준에 따른 고추 접목묘들의 생육과 생리적 반응을 알아보고자 하였다. 접목을 위한 대목으로 '카타구루마', '코네시안 핫', '탄탄'의 3가지 품종을 사용하였고, 대조구로 실생 품종 '녹광' 접수로 이용하였다. 공급양액의 EC 조건에 따른 접목묘와 실생묘의 생육과 생리적 반응 시험을 위해 공급 양액의 EC를 각각 1.5, 3.0, 5.0dS/m로 설정하여 비교시험을 수행하였다. 공급양액의 EC 수준에 따른 생육은 실생묘와 접목묘 모두 EC 수준이 높아질수록 억제되는 경향을 보였다. 접목묘 중 '카타구루마'가 EC 5.0dS/m에서 다른 품종들에 비해서 생육이 상대적으로 양호하였다. 단, EC 조건에 따른 생육은 재배시험 시기에 따라 다소 차이가 있었다. 무기양분의 흡수는 T-N과 P 농도는 EC 수준이 높을수록 증가하였으며, Ca과 Mg은 흡수량이 감소하였다. 광합성 능력은 실생묘는 EC 1.5와 3.0dS/m 수준간에 차이가 없으나, EC 5.0dS/m 수준에서 낮게 나타났다. 접목묘들도 EC 5.0dS/m 수준에서 광합성 능력이 낮아지는 결과를 보였다. SOD 활성도는 EC 수준에 따라 일정한 경향이 나타나지 않았으며, APX 활성도는 EC 5.0dS/m 수준에서 활성도가 높게 나타났다. 추후 더 다양한 대목들을 이용한 비교시험이 필요하며, 저온신장성과 내염성이 강한 대목 품종의 개발을 위한 연구의 필요성이 높다.

Keywords

References

  1. Acton, D.F. and L.J. Gregorich. 1995. The health of our soils; Toward sustainable agriculture in Canada. Agriculture and Agri-Food. Canada
  2. Asda, K. and M. Takahashi. 1987. Production and scavenging of active oxygens in chloroplats. p. 227-287. In: Kyle, D.J., C.B Osmond, and C.J. Arntzen (Eds.). Photoinhibition. Elsevier. Amsterdam
  3. Awad, A.S., D.G. Edwards, and L.C. Campbell. 1990. Phosphorus enhancement of salt tolerance of tomato, Crop Sci. 30:123-128 https://doi.org/10.2135/cropsci1990.0011183X003000010028x
  4. Baligar, V.C., N.K. Fageria, and M.A. Elrashidi. 1998. Toxicity and nutrient constrains on root growth. Hort-Science 33:960-965
  5. Bae, J.H. and K.H. Kim. 2004. The effect of irrigation concentration on the growth and fruit quality of sweet pepper (Capsicum annuum L.) in fertigation. J. Bio-Env. Con. 13:167-171 (in Korean)
  6. Bor, M., F. Ozdemir, and I. Tukan. 2003. The effect of salt stress in lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L. Plant. Sci. 164:77-84 https://doi.org/10.1016/S0168-9452(02)00338-2
  7. Chartzoulakis, K.S. 1994. Photosynthesis, water relations, and leaf growth of cucumber exposed to salt stress. Sci. Hort. 59:27-35 https://doi.org/10.1016/0304-4238(94)90088-4
  8. Chartzoulakis, K.S. and G. Klapaki. 2000. Effect of NaCl salinity on growth and yield of two peper cutivars. Acta Hort. 511:143-149
  9. Chung, H.D. and Y.J. Choi. 2002a. Growth response on varying soil EC and selection of salt-tolerant rootstock of tomato (Lycopersicon spp). J. Kor. Soc. Hort. Sci. 43:536-544 (in Korean)
  10. Chung, H.D. and Y.J. Choi. 2002b. Enhancement of salt tolerance of pepper plants (Capsicum annuum) by grafting. J. Kor. Soc. Hort. Sci. 43:556-564 (in Korean)
  11. Foyer, C.H., P. Descourvieres, and K.J. Kunert. 1994. protection of gluthathione and gluthathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta. 133:21-25 https://doi.org/10.1007/BF00386001
  12. Heo, Y.C., Y.H. Woo, D.H. Kim, J.M. Lee, and Y.H. Om. 2003. Salt tolerance of watermelon grafted onto Citrullus Rootstocks selected for disease resistance. J. Kor. Soc. Hort. Sci. 44:655-660 (in Korean)
  13. Inden, T. 1977. Environment and cultivation in protected horticulture. Seibundo Shinkosha, Japan, pp. 295-338
  14. Ko, K.D. 1999. Response of cucurbitaceous rootstock species to biological and environmental stress. Thesis for Ph D. Seoul National University (in Korean)
  15. Larcher, W. 1995. Physiological plant ecology (3rd ed.). Springer, Berlin
  16. Lee, Y.M., J. Yun, S.H. Shin, and W.Y. Choi. 1998. Varietal difference in seedling growth and cation contents under NaCl treated rice. Kor. J. Breed. 30:104-113 (in Korean)
  17. Lopez, F., G. Vansuyt, F. Casse-Delbart, and P. Fourcroy. 1996. Ascorbate peroxidase activity not the mRNA level, is enhanced in salt stressed Raphanus sativus plants. Physiol. Plant. 97:13-20 https://doi.org/10.1111/j.1399-3054.1996.tb00472.x
  18. Nakano, Y., K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. plant Cell Physiol. 22:867-880
  19. Neumann, P.M., H. Azaizeh, and D. Leon. 1994. Hardening of root cell walls: a growth inhibitory response to salinity stress. Plane and Cell Environ. 17:303-309 https://doi.org/10.1111/j.1365-3040.1994.tb00296.x
  20. Niu, X., R.A. Bressan, P.M. Hasegawa, and J.M. Pardo. 1995. Ion homeostasis in NaCl stress environments. Plant Physiol. 109:735-742
  21. Ono, S. and A. Mori. 1996. Effect of chemical form of fertilizers on chemical stress. Japan. J. Soil. Sci. Plant Nutr. 67:371-376
  22. Park, E.J., Y.G. Sohn, J.C. Park, and J.J. Lee. 2006. Effects of NaCl on the growth and inorganic ion contents of green pepper 'Nokwang' and bell pper 'Newace'. Kor. J. Hort. Sci. Technol. 24:1-7 (in Korean)
  23. Rural Development Administration (RDA). 1997. Technique of replant failure in the plastic film house soils. RDA, Suwon, Korea (in Korean)
  24. Shalata, A. and M. Tal. 1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycorpersicon pennellii. Physiol. Plant. 101:167-174
  25. Shin, W.K. and J.C. Park. 1988. Excessive salt accumulation and salt elimination by watering in the plastic film house soils. Gyeongsang Univ. Inst. of Agr. & Life Sci. 22:209-222 (in Korean)
  26. Volkmar, K.M., Y. Hu, and H. Steppuhn. 1998. Physiological response of plants to salinity: A review. Can. J. Plant Sci. 78:19-27 https://doi.org/10.4141/P97-020
  27. Wang, J., H. Zhang, and R.D. Allen. 1999. Overexpression of an Arabidopsis peroxisomal ascorbate gene increases protection against oxidative stress. Plant Cell Physiol. 40:725-732 https://doi.org/10.1093/oxfordjournals.pcp.a029599