• Title/Summary/Keyword: 엘보

Search Result 24, Processing Time 0.025 seconds

Grounding Elbow System for Underground (지중 접지 엘보시스템)

  • Joo, Jong-Min;Choi, Kyoung-Sun;Lee, Se-Jun;An, Jin-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1030-1031
    • /
    • 2015
  • 지중접지 엘보시스템은 개폐기의 부싱에 접속되어 있는 전력케이블을 접지하고자 할 때 절연플러그를 분리하지 않고 엘보컨넥터에 직접 접지할 수 있도록 하였으며, 검전기를 내장하여 안전하고 신속하게 접지작업이 이루어져 개폐기의 교체나 보수작업이 안전하게 제공될 수 있도록 하였다.

  • PDF

Flow Analysis in the Piping System with Elbows (엘보가 있는 배관계의 유동해석)

  • 양희천;박상규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.3-7
    • /
    • 2001
  • Although elbows are commonly used in practice, many questions regarding the optimum arrangement still remain unanswered. The effect due to an elbow lasts for a considerable distance downstream of the elbow and is severe when two elbows are in the system. The goal of this study is to provide an effective guide for the optimum arrangement of elbows and the optimum design of the approach piping system.

  • PDF

Damage Index Evaluation Based on Dissipated Energy of SCH 40 3-Inch Carbon Steel Pipe Elbows Under Cyclic Loading (주기적 하중을 받는 SCH 40 3-Inch 탄소강관엘보의 소산에너지 기반의 손상지수 평가)

  • Kim, Sung-Wan;Yun, Da-Woon;Jeon, Bub-Gyu;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.112-119
    • /
    • 2021
  • The failure mode of piping systems due to seismic loads is the low-cycle fatigue failure with ratcheting, and it was found that the element in which nonlinear behavior is concentrated and damage occurs is the elbow. In this study, to quantitatively express the failure criteria for a pipe elbow of SCH40 3-inch carbon steel under low-cycle fatigue, the limit state was defined as leakage, and the in-plane cyclic loading test was conducted. For the carbon steel pipe elbow, which is the vulnerable part to seismic load of piping systems, the damage index was represented using the moment-deformation angle relationship, and it was compared and analyzed with the damage index calculated using the force-displacement relationship. An attempt was made to quantitatively express the limit state of the carbon steel pipe elbow involving leakage using the damage index, which was based on the dissipated energy caused by repeated external forces.

Limit State Evaluation of Elbow Components Connected with Flexible Groove Joints (유동식 그루브 조인트로 연결된 엘보 요소의 한계상태 평가)

  • Sung-Wan Kim;Da-Woon Yun;Bub-Gyu Jeon;Dong-Uk Park;Sung-Jin Chang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.91-99
    • /
    • 2024
  • Piping systems are crucial facilities used in various industries, particularly in areas related to daily life and safety. Piping systems are fixed to the main structures of buildings and facilities but do not support external loads and serve as non-structural elements performing specific functions. Piping systems are affected by relative displacements owing to phase differences arising from different behaviors between two support points under seismic loads; this can cause damage owing to the displacement-dominant cyclic behavior. Fittings and joints in piping systems are representative elements that are vulnerable to seismic loads. To evaluate the seismic performance and limit states of fittings and joints in piping systems, a high-stroke actuator is required to simulate relative displacements. However, this is challenging because only few facilities can conduct these experiments. Therefore, element-level experiments are required to evaluate the seismic performance and limit states of piping systems connected by fittings and joints. This study proposed a method to evaluate the seismic performance of an elbow specimen that includes fittings and joints that are vulnerable to seismic loads in vertical piping systems. The elbow specimen was created by connecting straight pipes to both ends of a 90° pipe elbow using flexible groove joints. The seismic performance of the elbow specimen was evaluated using a cyclic loading protocol based on deformation angles. To determine the margin of the evaluated seismic performance, the limit states were assessed by applying cyclic loading with a constant amplitude.

Behavior of Elastic and Plastic Limit Loads of Thinned Elbows Observed During Real-Scale Failure Test Under Combined Load (감육엘보 실증실험에서의 탄성 및 소성 한계하중 거동 고찰)

  • Lee, Sung-Ho;Lee, Jeong-Keun;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1293-1298
    • /
    • 2010
  • In most power plants, wall thinning in carbon-steel pipes due to flow-accelerated corrosion is one of the major aging phenomena, and it reduces the load-carrying capacity of the piping system. Various types of wall-thinning defects were manufactured in real-scale elbows, and monotonic in-plane bending tests were performed under internal pressure to evaluate the failure behavior of the elbows. In this paper, the behavior of elastic and plastic limit leads of locally thinned elbows in a real-scale failure test is presented. The loads determined on the basis of TES (twice elastic slope) were considered to be the limit loads of locally thinned elbows so that the integrity of the thinned elbows could be maintained, even when a small amount of plastic deformation might have occurred.

Limit State Assessment of SCH80 3-inch Steel Pipe Elbows Using Moment-Deformation Angle Relationship (모멘트-변형각의 관계를 이용한 SCH80 3인치 강재배관엘보의 한계상태 평가)

  • Kim, Sung-Wan;Yun, Da-Woon;Cheung, Jin-Hwan;Kim, Seong-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.122-129
    • /
    • 2020
  • To conduct probabilistic seismic fragility analysis for nuclear power plants, it is very important to define the failure modes and criteria that can represent actual serious accidents. The seismic design criteria for piping systems, however, cannot fully reflect serious accidents because they are based on plastic collapse and cannot express leakage, which is the actual limit state. Therefore, it is necessary to clearly define the limit state for reliable probabilistic seismic fragility analysis. Therefore, in this study, the limit state of the SCH80 3-inch steel pipe elbow, the vulnerable part of piping systems, was defined as leakage, and the in-plane cyclic loading test was conducted. Moreover, an attempt was made to quantify the failure criteria for the steel pipe elbow using the damage index, which was based on the dissipated energy that used the moment-deformation angle relationship.

The Effect of Distance between $90^{\circ}$Elbow close to Upstream Face of Orifice Plate and Orifice Plate on Discharge Coefficient (오리피스 전단에 인접한 $90^{\circ}$엘보와 오리피스간의 거리가 유출계수에 미치는 영향)

  • Yoon Joon-yong;Sung Nak-won
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.357-360
    • /
    • 2002
  • The effect of distance between ninety degree elbow close to upstream face of orifice plate and orifice plate on discharge coefficient was investigated. The distributions of discharge coefficient and differential pressure caused by elbow and short upstream straight length were examined and modified discharge coefficient was introduced. The results presented in this study could be useful when orifice plate is installed under the condition of simple flow disturbance element and short upstream straight length.

  • PDF

Experimental study of internal flow field about 90degree elbow for cooling seawater pipe at the main condenser (주복수기 냉각해수배관의 직각 엘보 내부유동특성에 관한 연구)

  • Oh, Seung Jin;Cho, Dae Hwan;Bong, Tae Geun;Kim, Ok Sok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.152-153
    • /
    • 2012
  • While engine room arranging pipe which is used from the vessel, It measured the internal flow of 90 degree elbow which is used from the main condenser. Fluid flow in elbow of 90 degree is measured by PIV and Dewetron system. The Reynolds number adopts 50000 and experimental study of flow field in the elbow.

  • PDF

자재의 모든 것 (6)-초보자를 위한 배관부속-엘보.티

  • Korea Mechanical Construction Contractors Association
    • 월간 기계설비
    • /
    • no.11 s.208
    • /
    • pp.99-102
    • /
    • 2007
  • 설비건설업을 하다보면 여러 가지 자재들을 사용해야 한다. 하지만 비슷한 제품을 우리가 시공하는 현장에는 어떤 제품이 적합한 것인지 궁금할 때가 많다. 더욱이 제품 특징 및 단가 등이 알고 싶을 때 일일이 찾아봐야 하는 번거로움이 따른다. 본지는 회원사의 설비자재에 대한 궁금증을 해소하기 위해 지난 6월호부터 특정 자재를 선정하여 제품의 특징, 제품단가, 영업담당자 연락처 등을 담은 '자재의 모든 것'을 게재한다.

  • PDF