• Title/Summary/Keyword: 에칭공정

Search Result 235, Processing Time 0.03 seconds

Study on Safety Management Plan through Chemical Accident Investigation in PCB Manufacturing Facility Etching Process (PCB 제조시설 에칭공정 화학사고 조사를 통한 안전관리 방안 연구)

  • Park, Choon-Hwa;Kim, Hyun-Sub;Jeon, Byeong-Han;Kim, Duk-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.132-137
    • /
    • 2018
  • Although the number of chemical accidents has been declining since the Chemical Control Act of 2015, there have been repeated occurrences of similar types of accidents at printed circuit board (PCB) manufacturing facilities. These accidents were caused by the overflow of hydrochloric acid and hydrogen peroxide, which are toxic chemicals used in the printed circuit board manufacturing process. An analysis of the $Cl^-$ content to identify the cause of the accident showed that in the mixed route of hydrochloric acid and hydrogen peroxide, which are accidental substances, the $Cl^-$ concentration was 66.85 ppm in the hydrogen peroxide sample. Through reaction experiments, it was confirmed that the deformation of a PVC storage tank and generation of chlorine gas, which is a toxic gas, occurred due to reaction heat occurring up to $50.5^{\circ}C$. This paper proposes a facility safety management plan, including overcharge, overflow prevention, leak detection device, and separation tank design for mixing prevention in printed circuit board manufacturing facility etch process. To prevent the recurrence of accidents of the same type, the necessity of a periodic facility safety inspection and strengthening of the safety education of workers was discussed.

A Study on the Leaching and Recovery of Lithium by Reaction between Ferric Chloride Etching Solution and Waste Lithium Iron Phosphate Cathode Powder (폐리튬인산철 양극재 분말과 염화철 에칭액과의 반응에 의한 리튬의 침출 및 회수에 대한 연구)

  • Hee-Seon Kim;Dae-Weon Kim;Byung-Man Chae;Sang-Woo Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.9-17
    • /
    • 2023
  • Efforts are currently underway to develop a method for efficiently recovering lithium from the cathode material of waste lithium iron phosphate batteries (LFP). The successful application of lithium battery recycling can address the regional ubiquity and price volatility of lithium resources, while also mitigating the environmental impact associated with both waste battery material and lithium production processes. The isomorphic substitution leaching process was used to recover lithium from spent lithium iron phosphate batteries. Lithium was leached by the isomorphic substitution of Fe2+ in LFP using a relatively inexpensive ferric chloride etching solution as a leaching agent. In the study, the leaching rate of lithium was compared using the ferric chloride etching solution at various multiples of the LFP molar ratio: 0.7, 1.0, 1.3, and 1.6 times. The highest lithium leaching rate was shown at about 98% when using 1.3 times the LFP molar ratio. Subsequently, to eliminate Fe, the leachate was treated with NaOH. The Fe-free solution was then used to synthesize lithium carbonate, and the harvested powder was characterized and validated. The surface shape and crystal phase were analyzed using SEM and XRD analysis, and impurities and purity were confirmed using ICP analysis.

Oxidation Process for the Etching Solution Regeneration of Ferric Chloride Using Liquid and Solid Oxidizing Agent (염화철 에칭 용액 재생을 위한 액상 및 고상 산화제를 이용한 산화공정에 대한 연구)

  • Kim, Dae-Weon;Park, Il-Jeong;Kim, Geon-Hong;Chae, Byung-man;Lee, Sang-Woo;Choi, Hee-Lack;Jung, Hang-Chul
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.158-162
    • /
    • 2017
  • $FeCl_3$ solution has been used as an etchant for metal etching such as Fe, Cu, Al and Ni. In the etching process, $Fe^{3+}$ is reduced to $Fe^{2+}$ and the etching efficiency is decreased. Waste $FeCl_3$ etchant has environmental, economic problems and thus the regeneration of the etching solution has been required. In this study, HCl was mixed with the $FeCl_2$ solution and then, $H_2O_2$, $NaClO_3$ were added into the mixed solution to oxidize the $Fe^{2+}$. During the oxidation process, oxidation-reduction potential (ORP) was measured and the relationship between ORP and oxidation ratio was investigated. The ORP is increased with increasing the concentration of $H_2O_2$ and $NaClO_3$, and then the ORP is decreased with oxidation progress. Such a behavior was in good agreement with Nernst's equation. Also, the oxidation efficiency was about 99% when a sufficient amount of HCl and $H_2O_2$, $NaClO_3$ were added.

The study of evaluating surface characteristics and effect of thermal annealing process for AlN single crystal grown by PVT method (PVT법으로 성장된 AlN 단결정의 표면 특성 평가 및 고온 어닐링 공정의 효과에 대한 연구)

  • Kang, Hyo Sang;Kang, Suk Hyun;Park, Cheol Woo;Park, Jae Hwa;Kim, Hyun Mi;Lee, Jung Hun;Lee, Hee Ae;Lee, Joo Hyung;Kang, Seung Min;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.143-147
    • /
    • 2017
  • To evaluate surface characteristics and improve crystalline quality of AlN single crystal grown by physical vapor transport (PVT) method, wet chemical etching process using $KOH/H_2O_2$ mixture in a low temperature condition and thermal annealing process was proceeded respectively. Conventional etching process using strong base etchant at a high temperature (above $300^{\circ}C$) had formed over etching phenomenon according to crystalline quality of materials. When it occurred to over etching phenomenon, it had a low reliability of dislocation density because it cannot show correct number of etch pits per estimated area. Therefore, it was proceeded to etching process in a low temperature (below $100^{\circ}C$) using $H_2O_2$ as an oxidizer in KOH aqueous solution and to be determined optimum etching condition and dislocation density via scanning electron microscope (SEM). For improving crystalline quality of AlN single crystal, thermal annealing process was proceeded. When compared with specimens as-prepared and as-annealed, full width at half maximum (FWHM) of the specimen as-annealed was decreased exponentially, and we analyzed the mechanism of this process via double crystal X-ray diffraction (DC-XRD).

Fabrication technology for miniaturization of the spin-valve transistor (스핀 밸브 트랜지스터의 소형화 공정 기술)

  • Kim Sungdong;Maeng Hee-young
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.324-328
    • /
    • 2005
  • 스핀 밸스 트랜지스터를 소형화 할 수 있는 공정 기술을 소개한다. 스핀 밸브 트랜지스터는 두 개의 실리콘 에미터, 컬렉터 사이에 다층 자성 금속 박막이 존재하는 구조를 갖고 있는 스핀트로닉스 소자이다. SU8을 절연층으로 사용한 접촉 패드의 도입, 실리콘 온 인슐레이터의 사용, 그리고 이온빔/습식 복합에칭 공정의 적용으로 수 ${\mu}m$까지 소형화 할 수 있었다. 트랜지스터의 소형화에 따른 특성 변화는 관찰되지 않았으며, 기존의 트랜지스터와 동일한 $240\%$의 자기전류값을 나타내었다.

  • PDF

Recovery of Iron-Nickel Alloy Etching Waste Solution in Pilot Scale (파일럿 규모에서 철-니켈 합금 에칭폐액 재생)

  • Chae, Byungman;Kim, Dae-Weon;Hwang, Sung-Ok;Kim, Deukhyeon;Lee, Sangwoo
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.393-400
    • /
    • 2017
  • In this study, we have developed a process for separating and recovering Ni and Fe in solution through a new solvent instead of TBP and Alamine336, which are solvents used in the conventional solvent extraction method. Experimental conditions were optimized through lab test and a $10L\;h^{-1}$ pilot plant was constructed for commercialization. In addition, the process data for mass production were obtained through pilot experiment and it was confirmed that there is no problem in product quality that can be used through the corrosion test of ferric chloride.