In this paper, we propose a highly precise vehicle detection method with low false alarm using billboard sweep stereo matching and multi-stage hypothesis generation. First, we capture stereo images from cameras established in front of the vehicle and obtain the disparity map in which the regions of ground plane or background are removed using billboard sweep stereo matching algorithm. And then, we perform the vehicle detection and tracking on the labeled disparity map. The vehicle detection and tracking consists of three steps. In the learning step, the SVM(support vector machine) classifier is obtained using the features extracted from the gabor filter. The second step is the vehicle detection which performs the sobel edge detection in the image of the left camera and extracts candidates of the vehicle using edge image and billboard sweep stereo disparity map. The final step is the vehicle tracking using template matching in the next frame. Removal process of the tracking regions improves the system performance in the candidate region of the vehicle on the succeeding frames.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.5
/
pp.42-47
/
2017
In the distribution of digital image, the median filtering is used for a forgery. This paper proposed the algorithm of a image forensics detection for the classification of median filtering. For the solution of this grave problem, the feature vector is composed of 42-Dim. The detected quantity 32, 64 and 128 of forgery image edges, respectively, which are processed by the Hough transform, then it extracted from the start-end point coordinates of the Hough Lines. Also, the Hough Peaks of the Angle-Distance plane are extracted. Subsequently, both of the feature vectors are composed of the proposed scheme. The defined 42-Dim. feature vector is trained in SVM (Support Vector Machine) classifier for the MF classification of the forged images. The experimental results of the proposed MF detection algorithm is compared between the 10-Dim. MFR and the 686-Dim. SPAM. It confirmed that the MF forensic classification ratio of the evaluated performance is 99% above with the whole test image types: the unaltered, the average filtering ($3{\times}3$), the JPEG (QF=90 and 70)) compression, the Gaussian filtered ($3{\times}3$ and $5{\times}5$) images, respectively.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.45
no.1
/
pp.75-83
/
2008
We propose a welfare interface using multiple fecial features tracking, which can efficiently implement various mouse operations. The proposed system consist of five modules: face detection, eye detection, mouth detection, facial feature tracking, and mouse control. The facial region is first obtained using skin-color model and connected-component analysis(CCs). Thereafter the eye regions are localized using neutral network(NN)-based texture classifier that discriminates the facial region into eye class and non-eye class, and then mouth region is localized using edge detector. Once eye and mouth regions are localized they are continuously and correctly tracking by mean-shift algorithm and template matching, respectively. Based on the tracking results, mouse operations such as movement or click are implemented. To assess the validity of the proposed system, it was applied to the interface system for web browser and was tested on a group of 25 users. The results show that our system have the accuracy of 99% and process more than 21 frame/sec on PC for the $320{\times}240$ size input image, as such it can supply a user-friendly and convenient access to a computer in real-time operation.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.486-487
/
2012
본 논문에서는 차량 내에 설치된 카메라를 이용하여 전방차량을 인식하는 FCW(Forward Collision Warning)시스템에서 주행 중인 전방 차량을 추적하는 알고리즘을 제안한다. 전방 차량의 후보 영역을 검출하기 위해 Haar-Adaboost를 이용하였으며 검색된 차량 후보 영역 내의 에지 정보를 이용하여 차량 후보 영역을 필터링하였다. 필터링된 차량 영역은 영역기반과 Kalman 예측치를 이용하여 차량을 추적하는 방법으로 차량 검색기가 차량 영역을 검색하지 못하는 경우 Kalman 예측치를 통해 차량 후보 영역을 예측하고 예측된 차량 영역을 검증함으로써 효율적인 전방 차량 인식이 가능하였다. 본 제안 방법을 실험한 결과 이전 프레임에서 추적되던 차량 후보 영역이 현재 프레임에서 Haar-Adaboost가 차량 후보 영역을 검색하지 못하는 경우에 영역기반과 Kalman 예측치를 통하여 현재 프레임에서 전방차량을 연속적으로 추적하는 것을 확인하였다. 본 제안 방법은 영상을 이용한 FCW 시스템에 사용될 수 있을것으로 사료된다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.41-44
/
2022
Mean-Shift 영상 분할은 객체 검출을 위한 영상 전처리 방법으로써, 영상 처리 및 패턴 인식 분야에서 널리 사용되는 방법이다. 영상 분할은 영역 기반과 에지 기반 방식으로 나누어지며 대표적으로 FCM, Quickshift, Felzenszwalb, SLIC 알고리즘 등 이 있다. 언급한 영상 분할 방법들은 Mean-Shift 영상 분할에 비해서 빠른 속도로 실행시킬 수 있지만, 형태적 특징이 훼손되고 하나의 객체가 여러 세그멘테이션으로 분할된다는 단점을 가지고 있다. 본 논문에서는 소형 객체를 탐지하기 위한 고속화된 Mean-Shift 영상 분할과 객체의 형태적 특징을 이용하여 객체를 탐지하는 방법을 제안한다. 하드웨어 리소스가 제한된 신호처리기에 제안하는 알고리즘을 수행하기 위하여 Mean-Shift 영상 분할에서 필터링 과정을 고속화 하였고, 적외선 영상 내 영상 전처리 수행을 통해 잡음 제거 후 Mean-Shift 영상 분할 방법을 수행함으로써, 객체의 형태적 특징을 잘 살려서 영상 분할을 할 수 있도록 하였다. 또한 각 세그멘테이션의 크기, 너비, 높이, 밝기 정보와 형태적 특징점을 이용한 객체 탐지 방법을 제안한다.
AAM(Active Appearance Model) is an algorithm to extract face feature points with statistical models of shape and texture information based on PCA(Principal Component Analysis). This method is widely used for face recognition, face modeling and expression recognition. However, the detection performance of AAM algorithm is sensitive to initial value and the AAM method has the problem that detection error is increased when an input image is quite different from training data. Especially, the algorithm shows high accuracy in case of closed lips but the detection error is increased in case of opened lips and deformed lips according to the facial expression of user. To solve these problems, we propose the improved AAM algorithm using lip feature points which is extracted based on a new lip detection algorithm. In this paper, we select a searching region based on the face feature points which are detected by AAM algorithm. And lip corner points are extracted by using Canny edge detection and histogram projection method in the selected searching region. Then, lip region is accurately detected by combining color and edge information of lip in the searching region which is adjusted based on the position of the detected lip corners. Based on that, the accuracy and processing speed of lip detection are improved. Experimental results showed that the RMS(Root Mean Square) error of the proposed method was reduced as much as 4.21 pixels compared to that only using AAM algorithm.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.43
no.6
s.312
/
pp.26-33
/
2006
Film restoration is to detect the location and extent of defected regions from a given movie film, and if present, to reconstruct the lost information of each region. It has gained increasing attention by many researchers, to support multimedia service of high quality. In general, an old film is degraded by dust, scratch, flick, and so on. Among these, the most frequent degradation is the scratch. So far techniques for the scratch restoration have been developed, but they have limited applicability when dealing with all kinds of scratches. To fully support the automatic scratch restoration, the system should be developed that can detect all kinds of scratches from a given frame of old films. This paper presents a neurual network (NN)-based texture classifier that automatically detect all kinds of scratches from frames in old films. To facilitate the detection of various scratch sizes, we use a pyramid of images generated from original frames by having the resolution at three levels. The image at each level is scanned by the NN-based classifier, which divides the input image into scratch regions and non-scratch regions. Then, to reduce the computational cost, the NN-based classifier is only applied to the edge pixels. To assess the validity of the proposed method, the experiments have been performed on old films and animations with all kinds of scratches, then the results show the effectiveness of the proposed method.
Bilateral filter (BF), functioning by two Gaussian filters, domain and range filter is a nonlinear filter for sharpness enhancement and noise removal. In infrared (IR) small target detection field, the BF is designed by background predictor for predicting background not including small target. For this, the standard deviations of the two Gaussian filters need to be changed adaptively in background and target region of an infrared image. In this paper, the proposed bilateral filter make the standard deviations changed adaptively, using variance feature of mean values of surrounding block neighboring local filter window. And, in case the variance of mean values for surrounding blocks is low for any processed pixel, the pixel is classified to flat background and target region for enhancing background prediction. On the other hand, any pixel with high variance for surrounding blocks is classified to edge region. Small target can be detected by subtracting predicted background from original image. In experimental results, we confirmed that the proposed bilateral filter has superior target detection rate, compared with existing methods.
Kim, Tae-Hyung;Han, Jong-Goo;Park, Tae-Hee;Eom, Il-Kyu
Journal of the Institute of Electronics and Information Engineers
/
v.51
no.5
/
pp.152-159
/
2014
In this paper, we introduce a run-length for wavelet coefficients and present a image splicing detection method using the statistical moments for the wavelet run-length. Various pre-processings for the suspicious image are performed to emphasize the discontinuous edges caused by the image splicing. The proposed scheme has the merit that can exploit the various statistical characteristics of the wavelet transform. We extracted up to 72 features, and performed training and testing using SVM(support vector machine). Experimental results showed that the proposed method generates similar detection results compared to the existing methods. In addition, we showed the wavelet domain run-length is useful to detect the spliced image.
Park, Joon-Sung;Park, Hyung-Gu;Kim, Seong-Geun;Pu, Young-Gun;Lee, Kang-Yoon
Journal of the Institute of Electronics Engineers of Korea SD
/
v.48
no.4
/
pp.39-50
/
2011
In this paper, we presents a CDR circuit for $2^{nd}$-generation AiPi+, one of the Intra-panel Interface. The speed of the proposed clock and data recovery is increased to 1.25 Gbps compared with that of AiPi+. The DLL-based CDR architecture is used to generate the multi-phase clocks. We propose the simple scheme for frequency detector (FD) to mitigate the harmonic-locking and reduce the complexity. In addition, the duty cycle corrector that limits the maximum pulse width is used to avoid the problem of missing clock edges due to the mismatch between rising and falling time of VCDL's delay cells. The proposed CDR is implemented in 0.18 um technology with the supply voltage of 1.8 V. The active die area is $660\;{\mu}m\;{\times}\;250\;{\mu}m$, and supply voltage is 1.8 V. Peak-to-Peak jitter is less than 15 ps and the power consumption of the CDR except input buffer, equalizer, and de-serializer is 5.94 mW.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.