• Title/Summary/Keyword: 에지 검출기

Search Result 96, Processing Time 0.032 seconds

Vehicle Detection and Tracking using Billboard Sweep Stereo Matching Algorithm (빌보드 스윕 스테레오 시차정합 알고리즘을 이용한 차량 검출 및 추적)

  • Park, Min Woo;Won, Kwang Hee;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.764-781
    • /
    • 2013
  • In this paper, we propose a highly precise vehicle detection method with low false alarm using billboard sweep stereo matching and multi-stage hypothesis generation. First, we capture stereo images from cameras established in front of the vehicle and obtain the disparity map in which the regions of ground plane or background are removed using billboard sweep stereo matching algorithm. And then, we perform the vehicle detection and tracking on the labeled disparity map. The vehicle detection and tracking consists of three steps. In the learning step, the SVM(support vector machine) classifier is obtained using the features extracted from the gabor filter. The second step is the vehicle detection which performs the sobel edge detection in the image of the left camera and extracts candidates of the vehicle using edge image and billboard sweep stereo disparity map. The final step is the vehicle tracking using template matching in the next frame. Removal process of the tracking regions improves the system performance in the candidate region of the vehicle on the succeeding frames.

Forensic Classification of Median Filtering by Hough Transform of Digital Image (디지털 영상의 허프 변환에 의한 미디언 필터링 포렌식 분류)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.42-47
    • /
    • 2017
  • In the distribution of digital image, the median filtering is used for a forgery. This paper proposed the algorithm of a image forensics detection for the classification of median filtering. For the solution of this grave problem, the feature vector is composed of 42-Dim. The detected quantity 32, 64 and 128 of forgery image edges, respectively, which are processed by the Hough transform, then it extracted from the start-end point coordinates of the Hough Lines. Also, the Hough Peaks of the Angle-Distance plane are extracted. Subsequently, both of the feature vectors are composed of the proposed scheme. The defined 42-Dim. feature vector is trained in SVM (Support Vector Machine) classifier for the MF classification of the forged images. The experimental results of the proposed MF detection algorithm is compared between the 10-Dim. MFR and the 686-Dim. SPAM. It confirmed that the MF forensic classification ratio of the evaluated performance is 99% above with the whole test image types: the unaltered, the average filtering ($3{\times}3$), the JPEG (QF=90 and 70)) compression, the Gaussian filtered ($3{\times}3$ and $5{\times}5$) images, respectively.

Welfare Interface using Multiple Facial Features Tracking (다중 얼굴 특징 추적을 이용한 복지형 인터페이스)

  • Ju, Jin-Sun;Shin, Yun-Hee;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.1
    • /
    • pp.75-83
    • /
    • 2008
  • We propose a welfare interface using multiple fecial features tracking, which can efficiently implement various mouse operations. The proposed system consist of five modules: face detection, eye detection, mouth detection, facial feature tracking, and mouse control. The facial region is first obtained using skin-color model and connected-component analysis(CCs). Thereafter the eye regions are localized using neutral network(NN)-based texture classifier that discriminates the facial region into eye class and non-eye class, and then mouth region is localized using edge detector. Once eye and mouth regions are localized they are continuously and correctly tracking by mean-shift algorithm and template matching, respectively. Based on the tracking results, mouse operations such as movement or click are implemented. To assess the validity of the proposed system, it was applied to the interface system for web browser and was tested on a group of 25 users. The results show that our system have the accuracy of 99% and process more than 21 frame/sec on PC for the $320{\times}240$ size input image, as such it can supply a user-friendly and convenient access to a computer in real-time operation.

Vehicle Tracking for Forward Vehicle Detection (전방차량 인식을 위한 차량 추적 방법)

  • Jeong, Sung-Hwan;Kwon, Dong-Jin;Song, Hyok;Park, Sang-Hyun;Lee, Chul-Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.486-487
    • /
    • 2012
  • 본 논문에서는 차량 내에 설치된 카메라를 이용하여 전방차량을 인식하는 FCW(Forward Collision Warning)시스템에서 주행 중인 전방 차량을 추적하는 알고리즘을 제안한다. 전방 차량의 후보 영역을 검출하기 위해 Haar-Adaboost를 이용하였으며 검색된 차량 후보 영역 내의 에지 정보를 이용하여 차량 후보 영역을 필터링하였다. 필터링된 차량 영역은 영역기반과 Kalman 예측치를 이용하여 차량을 추적하는 방법으로 차량 검색기가 차량 영역을 검색하지 못하는 경우 Kalman 예측치를 통해 차량 후보 영역을 예측하고 예측된 차량 영역을 검증함으로써 효율적인 전방 차량 인식이 가능하였다. 본 제안 방법을 실험한 결과 이전 프레임에서 추적되던 차량 후보 영역이 현재 프레임에서 Haar-Adaboost가 차량 후보 영역을 검색하지 못하는 경우에 영역기반과 Kalman 예측치를 통하여 현재 프레임에서 전방차량을 연속적으로 추적하는 것을 확인하였다. 본 제안 방법은 영상을 이용한 FCW 시스템에 사용될 수 있을것으로 사료된다.

Target Detection Method using Lightweight Mean Shift Segmentation and Shape Features (경량화된 Mean-Shift 영상 분할 및 형태 특징을 이용한 객체 탐지 방법)

  • Kim, Jeong-Seok;Kim, Dae-Yeon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.41-44
    • /
    • 2022
  • Mean-Shift 영상 분할은 객체 검출을 위한 영상 전처리 방법으로써, 영상 처리 및 패턴 인식 분야에서 널리 사용되는 방법이다. 영상 분할은 영역 기반과 에지 기반 방식으로 나누어지며 대표적으로 FCM, Quickshift, Felzenszwalb, SLIC 알고리즘 등 이 있다. 언급한 영상 분할 방법들은 Mean-Shift 영상 분할에 비해서 빠른 속도로 실행시킬 수 있지만, 형태적 특징이 훼손되고 하나의 객체가 여러 세그멘테이션으로 분할된다는 단점을 가지고 있다. 본 논문에서는 소형 객체를 탐지하기 위한 고속화된 Mean-Shift 영상 분할과 객체의 형태적 특징을 이용하여 객체를 탐지하는 방법을 제안한다. 하드웨어 리소스가 제한된 신호처리기에 제안하는 알고리즘을 수행하기 위하여 Mean-Shift 영상 분할에서 필터링 과정을 고속화 하였고, 적외선 영상 내 영상 전처리 수행을 통해 잡음 제거 후 Mean-Shift 영상 분할 방법을 수행함으로써, 객체의 형태적 특징을 잘 살려서 영상 분할을 할 수 있도록 하였다. 또한 각 세그멘테이션의 크기, 너비, 높이, 밝기 정보와 형태적 특징점을 이용한 객체 탐지 방법을 제안한다.

  • PDF

A Study on Enhancing the Performance of Detecting Lip Feature Points for Facial Expression Recognition Based on AAM (AAM 기반 얼굴 표정 인식을 위한 입술 특징점 검출 성능 향상 연구)

  • Han, Eun-Jung;Kang, Byung-Jun;Park, Kang-Ryoung
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.299-308
    • /
    • 2009
  • AAM(Active Appearance Model) is an algorithm to extract face feature points with statistical models of shape and texture information based on PCA(Principal Component Analysis). This method is widely used for face recognition, face modeling and expression recognition. However, the detection performance of AAM algorithm is sensitive to initial value and the AAM method has the problem that detection error is increased when an input image is quite different from training data. Especially, the algorithm shows high accuracy in case of closed lips but the detection error is increased in case of opened lips and deformed lips according to the facial expression of user. To solve these problems, we propose the improved AAM algorithm using lip feature points which is extracted based on a new lip detection algorithm. In this paper, we select a searching region based on the face feature points which are detected by AAM algorithm. And lip corner points are extracted by using Canny edge detection and histogram projection method in the selected searching region. Then, lip region is accurately detected by combining color and edge information of lip in the searching region which is adjusted based on the position of the detected lip corners. Based on that, the accuracy and processing speed of lip detection are improved. Experimental results showed that the RMS(Root Mean Square) error of the proposed method was reduced as much as 4.21 pixels compared to that only using AAM algorithm.

Film Line Scratch Detection using a Neural Network based Texture Classifier (신경망 기반의 텍스처 분류기를 이용한 스크래치 검출)

  • Kim, Kyung-Tai;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.6 s.312
    • /
    • pp.26-33
    • /
    • 2006
  • Film restoration is to detect the location and extent of defected regions from a given movie film, and if present, to reconstruct the lost information of each region. It has gained increasing attention by many researchers, to support multimedia service of high quality. In general, an old film is degraded by dust, scratch, flick, and so on. Among these, the most frequent degradation is the scratch. So far techniques for the scratch restoration have been developed, but they have limited applicability when dealing with all kinds of scratches. To fully support the automatic scratch restoration, the system should be developed that can detect all kinds of scratches from a given frame of old films. This paper presents a neurual network (NN)-based texture classifier that automatically detect all kinds of scratches from frames in old films. To facilitate the detection of various scratch sizes, we use a pyramid of images generated from original frames by having the resolution at three levels. The image at each level is scanned by the NN-based classifier, which divides the input image into scratch regions and non-scratch regions. Then, to reduce the computational cost, the NN-based classifier is only applied to the edge pixels. To assess the validity of the proposed method, the experiments have been performed on old films and animations with all kinds of scratches, then the results show the effectiveness of the proposed method.

Small Target Detection Method Using Bilateral Filter Based on Surrounding Statistical Feature (주위 통계 특성에 기초한 양방향 필터를 이용한 소형 표적 검출 기법)

  • Bae, Tae-Wuk;Kim, Young-Taeg
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.756-763
    • /
    • 2013
  • Bilateral filter (BF), functioning by two Gaussian filters, domain and range filter is a nonlinear filter for sharpness enhancement and noise removal. In infrared (IR) small target detection field, the BF is designed by background predictor for predicting background not including small target. For this, the standard deviations of the two Gaussian filters need to be changed adaptively in background and target region of an infrared image. In this paper, the proposed bilateral filter make the standard deviations changed adaptively, using variance feature of mean values of surrounding block neighboring local filter window. And, in case the variance of mean values for surrounding blocks is low for any processed pixel, the pixel is classified to flat background and target region for enhancing background prediction. On the other hand, any pixel with high variance for surrounding blocks is classified to edge region. Small target can be detected by subtracting predicted background from original image. In experimental results, we confirmed that the proposed bilateral filter has superior target detection rate, compared with existing methods.

Detection of Spliced Image Using Run-length of Wavelet Coefficients and Statistical Moments (웨이블릿 계수의 런-길이와 통계적 모멘트를 이용한 접합 영상 검출)

  • Kim, Tae-Hyung;Han, Jong-Goo;Park, Tae-Hee;Eom, Il-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.152-159
    • /
    • 2014
  • In this paper, we introduce a run-length for wavelet coefficients and present a image splicing detection method using the statistical moments for the wavelet run-length. Various pre-processings for the suspicious image are performed to emphasize the discontinuous edges caused by the image splicing. The proposed scheme has the merit that can exploit the various statistical characteristics of the wavelet transform. We extracted up to 72 features, and performed training and testing using SVM(support vector machine). Experimental results showed that the proposed method generates similar detection results compared to the existing methods. In addition, we showed the wavelet domain run-length is useful to detect the spliced image.

A Design of DLL-based Low-Power CDR for 2nd-Generation AiPi+ Application (2세대 AiPi+ 용 DLL 기반 저전력 클록-데이터 복원 회로의 설계)

  • Park, Joon-Sung;Park, Hyung-Gu;Kim, Seong-Geun;Pu, Young-Gun;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.4
    • /
    • pp.39-50
    • /
    • 2011
  • In this paper, we presents a CDR circuit for $2^{nd}$-generation AiPi+, one of the Intra-panel Interface. The speed of the proposed clock and data recovery is increased to 1.25 Gbps compared with that of AiPi+. The DLL-based CDR architecture is used to generate the multi-phase clocks. We propose the simple scheme for frequency detector (FD) to mitigate the harmonic-locking and reduce the complexity. In addition, the duty cycle corrector that limits the maximum pulse width is used to avoid the problem of missing clock edges due to the mismatch between rising and falling time of VCDL's delay cells. The proposed CDR is implemented in 0.18 um technology with the supply voltage of 1.8 V. The active die area is $660\;{\mu}m\;{\times}\;250\;{\mu}m$, and supply voltage is 1.8 V. Peak-to-Peak jitter is less than 15 ps and the power consumption of the CDR except input buffer, equalizer, and de-serializer is 5.94 mW.