• Title/Summary/Keyword: 에너지 정의

Search Result 2,864, Processing Time 0.03 seconds

Evaluation of Environmental Economics on Dismantling Projects Using LCI DB (LCI DB를 활용한 해체공사 환경경제성 평가)

  • Kwon, Suk-Hyun;Kim, Kyong-Ju;Kim, Byung-Soo;Kim, Sang-Beom
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.233-238
    • /
    • 2008
  • Korea has a high volume of exhaust in environmental pollutants compared to her economic size, which results from the increase of the ratio in high energy consuming industries. There arises an issue that efficient energy saving is not achieved in the related projects of the construction, which is one of the high energy consuming industries. In addition, such projects of dismantling old and decrepit buildings are frequent in recent years. Given the situation, to obtain much better effects of energy saving, it is necessary to build basic databases and develop utilization plans on energy consumption volume, exhaust volume of pollutants, and environmental expenses that come from the dismantlement stages out of the life cycle of construction projects. Therefore, this study calculates the exhaust volume of environmental pollutants, converts it into environmental expenses by pollutants, and evaluates the environmental economics on the projects of dismantling buildings, utilizing LCI DB that is suggested by Ministry of Knowledge Economy and Ministry of Environment. For this purpose, related data research, the existing literature study, and on-the-spot field investigation were conducted. Based on the results of analysis on the collected data, the environmental economics of the target building was evaluated.

  • PDF

Numerical Simulations for Optimal Utilization of Geothermal Energy under Groundwater-bearing Conditions (지하수 부존지역에서 최적 지열에너지 활용방식 수치 모의)

  • Kim, Jin-Sung;Cha, Jang-Hwan;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.487-499
    • /
    • 2014
  • While the vertical open type of heat exchanger is more effective in areas of abundant groundwater, and is becoming more widely used, the heat exchanger most commonly used in geothermal heating and cooling systems in Korea is the vertical closed loop type. In this study, we performed numerical simulations of the optimal utilization of geothermal energy based on the hydrogeological and thermal properties to evaluate the efficiency of the vertical open type in areas of abundant groundwater supply. The first simulation indicated that the vertical open type using groundwater directly is more efficient than the vertical closed loop type in areas of abundant groundwater. Furthermore, a doublet system with separated injection and extraction wells was more efficient because the temperature difference (${\Delta}$) between the injection and extraction water generated by heat exchange with the ground is large. In the second simulation, we performed additional numerical simulations of the optimal utilization of geothermal energy that incorporated heat transfer, distance, flow rate, and groundwater hydraulic gradient targeting a single well, SCW (standing column well), and doublet. We present a flow diagram that can be used to select the optimal type of heat exchanger based on these simulation results. The results of this study indicate that it is necessary to examine the adequacy of the geothermal energy utilization system based on the hydrogeological and thermal properties of the area concerned, and also on a review of the COP (coefficient of performance) of the geothermal heating and cooling system.

Trends of Annual and Monthly FAO Penman-Monteith Reference Evapotranspiration (연별 및 월별 FAO Penman-Monteith 기준증발산 추세 분석)

  • Rim, Chang-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.65-77
    • /
    • 2008
  • The effects of climatic changes owing to urbanization, geographical and topographical conditions on annual and monthly FAO Penman-Monteith (FAO P-M) reference evapotranspiration, and energy and aerodynamic terms of FAO P-M reference evapotranspiration were studied. In this study, 21 climatological stations were selected. The statistical methods applied for trend analysis are Spearman rank test, Sen's test, linear regression analysis and analysis of actual variation ratio. Furthermore, the cluster analysis was applied to cluster 21 study stations by considering the geographical and topographical characteristics of study area. The study results indicate that urbanization affects the trend and amount of FAO P-M reference evapotranspiration, energy term and aerodynamic term; however, the result of Sen's test indicates that urbanization does not significantly affect the magnitude of trend (Sen's slope). The energy term increased at study stations located in coastal area; however, decreased at study stations located in inland area. The topographical slope of study area did not significantly influence on the trend of energy term. The aerodynamic term increased in both coastal area and inland area, indicating much significantly increasing trend in inland area, and it was also affected by the topographical slope of the study area.

Analysis of Surplus Solar Energy in Venlo Type Greenhouse (벤로형 온실의 잉여 태양에너지 분석)

  • Choi, Man Kwon;Shin, Yik Soo;Yun, Sung Wook;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.91-99
    • /
    • 2013
  • This research analyzed surplus solar energy in Venlo-type greenhouse using acquired typical meteorological year (TMY) data for designing a heat storage system for the surplus solar energy generated in the greenhouse during the day. In the case of paprika, the region-dependent heating loads for Jeju, Jinju, and Daegwanryong area were approximately 1,107.8 GJ, 1,010.0 GJ, and 3,118.5 GJ, respectively. The surplus solar energy measured in Jeju area was 1,845.4 GJ, Jinju area 1,881.8 GJ, and Daegwanryong area 2,061.8 GJ, with the Daegwanryong area showing 11.7% and 9.6% higher than the Jeju region and Jinju region respectively. In the case of chrysanthemums, regional heating loads were determined as 1,202.5 GJ for the Jeju region, 1,042.0 GJ for the Jinju region, and 3,288.6 GJ for the Daegwanryong region; the regional differences were similar to those for paprika. The recorded surplus solar energy was 1,435.2 GJ, 1,536.2 GJ, and 1,734.6 GJ for Jeju, Jinju, and Daegwanryong region, respectively. The Daegwanryong region recorded heating loads 20.9% and 12.9% higher than in the Jeju and Jinju region, respectively. From the above, it can be said that cultivating paprika, compared to cultivating chrysanthemums, requires less heating energy regardless of the region and tends to yield more surplus solar energy. Moreover, if the Daekwan Pass region is excluded, the surplus solar energy exceeds the energy required for heating. Although the required heating energy differs according to regions and crops, cucumbers were found to require the highest amount, followed by chrysanthemum and paprika. The amount of surplus solar energy was the highest in the case of paprika, followed by cucumber and chrysanthemum.

Cellulosic Ethanol as Renewable Alternative Fuel (신재생 대안 에너지로서의 셀룰로스 에탄올)

  • Cho, Woo-Suk;Chung, Yu-Hee;Kim, Bo-Kyung;Suh, Su-Jeoung;Koh, Wan-Soo;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.111-118
    • /
    • 2007
  • Global warming crisis due primarily to continued green house gas emission requires impending change to renewable alternative energy than continuously depending on exhausting fossil fuels. Bioenergy including biodiesel and bioethanol are considered good alternatives because of their renewable and sustainable nature. Bioethanol is currently being produced by using sucrose from sugar beet, grain starches or lignocellulosic biomass as sources of ethanol fermentation. However, grain production requires significant amount of fossil fuel inputs during agricultural practices, which means less competitive in reducing the level of green house gas emission. By contrast, cellulosic bioethanol can use naturally-growing, not-for-food biomass as a source of ethanol fermentation. In this respect, cellulosic ethanol than grain starch ethanol is considered a more appropriate as a alternative renewable energy. However, commercialization of cellulosic ethanol depends heavily on technology development. Processes such as securing enough biomass optimized for economic processing, pretreatment technology for better access of polymer-hydrolyzing enzymes, saccharification of recalcitrant lignocellulosic materials, and simultaneous fermentation of different sugars including 6-carbon glucose as well as 5-carbon xylose or arabinose waits for greater improvement in technologies. Although it seems to be a long way to go until commercialization, it should broadly benefit farmers with novel source of income, environment with greener and reduced level of global warming, and national economy with increased energy security. Mission-oriented strategies for cellulosic ethanol development participated by government funding agency and different disciplines of sciences and technologies should certainly open up a new era of renewable energy.

Growth and Photocurrent Properties of CuGaTe2 Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE) 방법에 의한 CuGaTe2 단결정 박막 성장과 광전류 특성)

  • 백승남;홍광준
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.158-158
    • /
    • 2003
  • 수평 전기로에서 CuGaTe2 다결정을 합성하여 HWE 방법으로 CuGaTe2 단결정 박막을 반절연성 GaAs(100) 위에 성장하였다. CuGaTe2 단결정 박막은 증발원과 기판의 온도를 각각 67$0^{\circ}C$, 41$0^{\circ}C$로 성장하였다. 이때 단결정 박막의 결정성이 10K에서 측정한 광발광 스펙트럼은 954.5nm (1.2989eV) 근처에서 exciton emission 스펙트럼이 가장 강하게 나타났으며, 또한 이중결정 X-선 요동곡선(DCRC)의 반폭치(FWHM)도 139arcsec로 가장 작게 측정되어 최적 성장 조건임을 알 수 있었다. Hall 효과는 van der Paw방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293K에서 각각 8.72$\times$$10^{23}$개/㎥, 3.42$\times$$10^{-2}$$m^2$/V.s였다. 상온에서 CuGaTe2 단결정 박막의 광흡수 특성으로부터 에너지 띠간격이 1.22 eV였다 Band edge에 해당하는 광전도도peak의 온도 의존성은 Varshni 관계식으로 설명되었으며, Varshni 관계식의 상수값은 Eg(0) = 1.3982 eV, $\alpha$= 4.27$\times$$10^{-4}$ eV/K, $\beta$= 265.5 K로 주어졌다. CuGaTe2 단결정 박막의 광전류 단파장대 봉우리들로부터 10K에서 측정된 $\Delta$cr (crystal Field splitting)은 0.0791eV, $\Delta$s.o (spin orbit coupling)는 0.2463eV였다. 10K에서 광발광 봉우리의 919.8nm (1.3479eV)는 free exciton(Ex), 954.5nm (1.2989eV)는 donor-bound exciton 인 I2(DO,X)와 959.5nm (1.2921eV)는 acceptor-bound exciton 인 I1(AO,X) 이고, 964.6nm(1.2853eV)는 donor-acceptor pair(DAP) 발광, 1341.9nm (0.9239eV)는 self activated(SA)에 기인하는 광발광 봉우리로 고찰되었다.

  • PDF

A Comparative Study on the Environmental Impacts by Concrete Strength Using End-point LCA methodology (피해산정형 전과정평가 기법을 적용한 콘크리트 압축강도별 환경영향 비교 분석 연구)

  • Kim, Sung-Hee;Tae, Sung-Ho;Chae, Chang-U
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.465-474
    • /
    • 2014
  • This is a comparative study that shows the overall environmental impacts from concrete structures when different compressive strength of concrete applied to structural systems having the same reference flow with different durability. A total of 24 MPa, 40 MPa and 60 MPa cases is analyzed to define the characteristic using end-point perspective LCA methodology including the stages of production, construction, maintenance and disposal. As results, global warming, non-renewable energy and respiratory inorganics problems are the major issues for assessing environmental impacts of concrete products.

Optical properties of $YVO_{4}$ and Nd:$YVO_{4}$ single crystals grown by developed EFG method (Developed EFG법으로 성장시킨 $YVO_{4}$ 및 Nd:$YVO_{4}$ 단결정의 광학적 특성)

  • ;;M.A. Ivanov;V.V. Kochurikhin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.180-183
    • /
    • 2001
  • $YVO_{4}$ and Nd:$YVO_{4}$ single crystals have been grown developed Edge-defined film-fed growth (EFG) method and the crystals were measured on optical properties. $YVO_{4}$ and Nd:$YVO_{4}$ single crystal were transparent, high quality due to homogeneity of surface temperature of the melt and stability of meniscus during crystal growth. In transmittance and absorption spectra, Nd:$YVO_{4}$ single crystals had absorption peaks at wavelengths of 532, 593, 753, 808, 888 though $YVO_{4}$ single crystal had a broad transmittance at wavelength ranging from 340 to 1000nm. Also, Nd:$YVO_{4}$ single crystals had emissions of energy at range of 800~900 nm in photoluminescence (PL) spectrum.

  • PDF

Electrical and Optical Properties of Bi12(Si,Ge)O20 Single Crystals (Bi12(Si,Ge)O20 단결정의 전기 및 광학적 특성)

  • Kim, Douk Hoon;Mun, Jung Hak;Lee, Chanku;Lee, Sudae
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.1 no.2
    • /
    • pp.37-42
    • /
    • 1996
  • The $Bi_{12}(Si,Ge)O_{20}$ single crystals were prepared by Czochralski method and the study of electrical and optical properties were carried out. The activation energy of the electrical conductivity was $E_g$=1.12 eV. The optical energy gap measured in the room temperature is found to be 2.3 eV. A.c. conductivity of crystal $Bi_{12}(Si,Ge)O_{20}$ was measured at temperatures from 290 K to 570 K in the frequency range from 50 kHz to 30 MHz. The a.c. conductivity is proportional to ${\omega}^s$. In view of this it should be hopping conduction mechanisms. At high frequencies, the power exponent was s=2. The low frequency dielectric constants were 54 for $Bi_{12}(Si,Ge)O_{20}$ and 41 for $Bi_{12}(Si,Ge)O_{20}$ single crystals.

  • PDF

Analysis of Potential to Achieve Carbon Neutrality through Technical Definition and Case Study of Carbon-Neutral Buildings (탄소중립 건물의 기술적 정의와 사례 분석을 통한 탄소중립 달성 잠재성 분석)

  • Min Hee Chung
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.19-28
    • /
    • 2024
  • This study analyzes the potential to achieve carbon neutrality through the technical definition and case studies of carbon-neutral buildings. In line with the Paris Agreement of December 2015, the global community has committed to limiting the average temperature rise to below 2oC and striving to restrict it to 1.5oC above pre-industrial levels. Achieving this requires reaching a net-zero state by 2050 and necessitates transitions across various sectors including energy, land use, and transportation. This research explores the technological approaches and real-world examples of carbon-neutral buildings, assessing their feasibility and limitations. By examining the definition of carbon-neutral buildings and presenting various technological solutions and case studies from both domestic and international contexts, this study evaluates the effectiveness and practicality of carbon-neutral buildings. The findings offer specific guidelines for the design, construction, and operation of carbon-neutral buildings and provide practical information for policymakers and practitioners aiming to create sustainable built environments.