• Title/Summary/Keyword: 에너지 산업

Search Result 4,556, Processing Time 0.028 seconds

Development and Application of Tunnel Design Automation Technology Using 3D Spatial Information : BIM-Based Design for Namhae Seomyeon - Yeosu Shindeok National Highway Construction (3D 공간정보를 활용한 터널 설계 자동화 기술 개발 및 적용 사례 : 남해 서면-여수 신덕 국도 건설공사 BIM기반 설계를 중심으로)

  • Eunji Jo;Woojin Kim;Kwangyeom Kim;Jaeho Jung;Sanghyuk Bang
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.209-227
    • /
    • 2023
  • The government continues to announce measures to revitalize smart construction technology based on BIM for productivity innovation in the construction industry. In the design phase, the goal is design automation and optimization by converging BIM Data and other advanced technologies. Accordingly, in the basic design of the Namhae Seomyeon-Yeosu Sindeok National Road Construction Project, a domestic undersea tunnel project, BIM-based design was carried out by developing tunnel design automation technology using 3D spatial information according to the tunnel design process. In order to derive the optimal alignment, more than 10,000 alignment cases were generated in 36hr using the generative design technique and a quantitative evaluation of the objective functions defined by the designer was performed. AI-based ground classification and 3D Geo Model were established to evaluate the economic feasibility and stability of the optimal alignment. AI-based ground classification has improved its precision by performing about 30 types of ground classification per borehole, and in the case of the 3D Geo Model, its utilization can be expected in that it can accumulate ground data added during construction. In the case of 3D blasting design, the optimal charge weight was derived in 5 minutes by reviewing all security objects on the project range on Dynamo, and the design result was visualized in 3D space for intuitive and convenient construction management so that it could be used directly during construction.

A Study on the Utilization of ESG for Reducing Carbon Emissions in the Building Sector and Development Directions (건물부문의 탄소배출량 절감을 위한 ESG의 활용방안과 발전방향)

  • Sang Duck Moon
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.801-824
    • /
    • 2022
  • Recently, United Nations found that 38% of global carbon emissions are generated in the building sector, surpassing other industries (32%) and transportation (23%), and ESG is actively used as a way to reduce carbon emissions in the building sector, led by overseas advanced countries. In Korea, as the National Pension Service announced "Consider ESG with more than 50% of investment assets" this year, the move to introduce ESG in the building sector is accelerating, centering on construction companies and asset management companies. However, as the domestic ESG evaluation system is still mainly focused on corporate governance and social responsibility, interest in the environmental sector is lagging behind that of advanced countries. As ESG in the building sector is expected to grow rapidly over the next 10 years, I would like to suggest the following development directions. The first is the expansion of the incentive system. In order for the government to successfully implement policies related to ESG in the building sector, incentive system such as tax reduction and building standards should be expanded further than now in addition to negative systems such as rent restrictions and punishment taxes due to regulatory violations. Second, standardized ESG standards are established. Rather than creating an independent Korean ESG standard that is far from global standards, it is necessary to organize the common parts of global standards and evaluation methods and create and provide guidelines in the form of standard textbooks that can be used equally by all stakeholders. Third, it is an effort to link ESG in the building sector with Digital Transformation(DX). This is because actual energy savings and carbon emission reduction can be realized only when the operation method of the building sector, which is operated mainly by manpower, is digitalized and converted to an intelligent way.

Hydration properties of OPC with Synthesized Calcium Alumino Ferrite(CAF) (합성 Calcium Alumino Ferrite(CAF) 치환량에 따른 시멘트 수화 특성)

  • Woong-Geol Lee;Myong-Shin Song
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2023
  • The cement is a typical CO2 emission industry. Manufacturing process improvements and increased use of alternative materials are needed to reduce energy consumption and CO2 emissions. This study confirmed the basic characteristics of cement hydration by sintering CAF at low temperature as a CO2 adsorbent material. For the hydration product of the synthetic CAF, crystal phase analysis, porosity, and structural images were confirmed, and the compressive strength was measured. The replacement rate of SCAF was 10, 20, and 100 %, and the compressive strength tended to decrease as the replacement rate increased. In addition, when the SCAF substitution rate is 100 %, the hydration products of the early age are calcium aluminum oxide hydrate (Ca3Al2O6 x H2O) and calcium iron hydroxide (Ca3Fe(OH)12), and at substitution rates of 10 and 20 %, CAF compounds other than general cement hydrates brownmillerite was observed. As for the porosity, the pore size increased and the porosity increased with the increase of the replacement ratio. As a result of this study, CAF manufactured by low-temperature sintering seems to be difficult to use alone and general curing for utilization as a CO2 adsorbing material.

Determination of Resistance Factors of Load and Resistance Factor Design for Drilled Shaft Based on Load Test (LRFD 설계를 위한 현장타설말뚝의 주면지지력 저항계수 산정)

  • Kim, Seok-Jung;Kwon, Oh-Sung;Jung, Sung-Jun;Han, Jin-Tae;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.17-24
    • /
    • 2010
  • Load Resistance Factor Design method is used increasingly in geotechnical design world widely and resistance factors for drilled shafts are suggested by AASHTO. However, these resistance factors are determined for intact rock conditions; by comparison, most of bedrocks in Korea have weathered condition, so that applying the AASHTO resistance factors is not reasonable. Thus, this study suggests the proper resistance factors for design of drilled shaft in Korea. The 22 cases of pile load test data from 8 sites were chosen and reliability-based approach is used to analyze the data. Reliability analysis was performed by First Order Second Moment Method (FOSM) applying 4 bearing capacity equations. As a result, when the Factor of Safety (FOS) was selected as 3.0, the target reliability indexes (${\beta}_c$) were evaluated as 2.01~2.30. Resistance factors and load factors are determined from optimization based on above results. The resistance factors ranged between 0.48 and 0.56 and load factors for dead load and live load are evaluated as approximately 1.25 and 1.75 respectively. However, when the target reliabilities are considered as 3.0, the resistance factors are evaluated as approximately 50% of the results when the target reliability index was 2.0.

A Study on Tensile Property due to Stacking Structure by Fiber Design of CT Specimen Composed of CFRP (CFRP로 구성된 CT시험편의 섬유설계에 의한 적층구조에 따른 인장 특성 연구)

  • Hwang, Gue-Wan;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.11
    • /
    • pp.447-455
    • /
    • 2017
  • At the modern industry, the composite material has been widely used. Particularly, the material of carbon fiber reinforced plastic hardened with resin on the basis of fiber is excellent. As the specific strength and rigidity are also superior, it receives attention as the light material. Among these materials, the carbon fiber reinforced plastic using carbon fiber has the superior mechanical property different from another fiber. So, it is utilized in vehicle and airplane at which high strength and light weight are needed at the same time. In this paper, the tensile property due to the fiber design is investigated through the analysis study with CT specimen composed of carbon plastic reinforced plastic. At the stress analysis of CFRP composite material with hole, the fracture trend at the tensile environment is examined. Also, it is shown that the lowest stress value happens and the deformation energy of the pre-crack becomes lowest at the analysis model composed of the stacking angle of 60° through the result due to the stacking angle. On the basis of this study result, it is thought to apply the foundation data to anticipate the fracture configuration at the structure applied with the practical experiment.

Quantum Efficiency Measurement and Analysis of Solar Cells (태양전지의 양자효율 측정 및 분석)

  • Youngkuk Kim;Donghyun Oh;Jinjoo Park;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.351-361
    • /
    • 2023
  • The purpose of this paper is to help those who research and develop solar cells in university laboratories and industrial sites understand the most basic and important quantum efficiency measurement and analysis method in analyzing solar cell performance. Starting with the definition of quantum efficiency, we calculate the theoretical current density according to the band gap of the solar cell material from the solar spectrum, along with a detailed introduction to the measurement and analysis methods, and measure and analyze the theoretical current density and quantum efficiency. We discuss in depth how to analyze the performance of solar cells through Quantum efficiency measurement and analysis of solar cells is a very useful method that can give intuition to solar cell performance analysis as it can analyze solar cells according to depth (front emitter, bulk, rear surface). Students and researchers who study solar cells with a deep understanding of theoretical current density and quantum efficiency measurement analysis are expected to use it as a basis for analyzing solar cell performance.

Rubidium Market Trends, Recovery Technologies, and the Relevant Future Countermeasures (루비듐 시장 및 회수 동향에 따른 향후 관련 대응방안)

  • Sang-hun Lee
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.3-8
    • /
    • 2023
  • This study discussed production, demand, and future prospects of rubidium, which is an alkali group metal that is highly reactive to various media and requires carefulness in handling, but no significant environmental hazard of rubidium has been reported yet. Rubidium is used in various fields such as optoelectronic equipment, biomedical, and chemical industries. Because of difficulty in production as well as limited demand, the transaction price of rubidium is relatively high, but its detail information such as market status and potential growth is uncertain. However, if the mass production of versatile ultra-high-performance equipment such as quantum computers and the necessity of rubidium use in the equipment are confirmed, there is a possibility that the rubidium market will expand in the future. Rubidium is often found together with lithium, beryllium, and cesium, and may be present in granite containing minerals such as lepidolite and pollucite, as well as in seawater and industrial waste. Several technologies such as acid leaching, roasting, solvent extraction, and adsorption are used to recover rubidium. The maximum recovery efficiency of the rubidium from the sources and the processing above is generally high, but, in many practices, rubidium is not the main recovery target, and therefore the actual recovery effects should depend on presence of other valuable components or impurities, together with recovery costs, energy consumption, environmental issues, etc. In conclusion, although the current production and consumption of rubidium are limited, with consideration of the possible market fluctuations according to the emergence of large-scale demand sources, etc., further investigations by related institutions should be necessary.

북한 대중국 교역 의존도의 국제 비교

  • Jeong, Su-Jin;Choe, Yeong-Yun
    • KDI북한경제리뷰
    • /
    • v.22 no.4
    • /
    • pp.41-58
    • /
    • 2020
  • 1998~2017년 북한의 교역을 관측한 결과, 북한의 대중 교역 비중은 꾸준히 증가하여 2017년에는 그 비중이 94.8%까지 높아진 것으로 관찰됐다. 즉, 동기간의 북한의 대중국 교역 의존도가 급증한 것을 확인 할 수 있다. 이러한 북한의 대중국 교역 의존도가 북한만의 특이한 교역 구조인지 확인하기 위해 본고는 ① 전세계, ② 아시아, ③ 중국 접경 국가를 비교군으로 설정하여 시계열 및 횡단면 비교를 각각 실시하였다. 먼저 시계열로 비교한 결과 1998~2017년 전 기간 동안 북한은 전세계, 아시아, 중국 접경 국가 보다 대중국 교역의존도가 현저히 높았던 것으로 나타났다. 또한 북한은 대중국 교역의존도 증가 추세 역시 가장 가파른 국가로 확인됐다. 예를 들어, 1998년 북한의 대중국 교역 의존도는 24.8%, 아시아 지역의 대중국 교역 의존도는 6.5%로 북한이 아시아 지역에 비해 약 3.8배 높았으나, 2017년의 경우 북한 94.8%, 아시아 19.4%로 약 4.9배 더 높은 것으로 나타나 지난 20년 동안 북한의 대중국 교역 의존도가 다른 전세계 국가들에 비해 가파르게 증가한 것으로 나타났다. 구체적으로 중국 접경 국가군에 소속된 개별 국가와 비교한 결과, 북한 다음으로 대중국 교역 의존도가 높고, 가파르게 증가한 국가는 몽골과 미얀마인 것으로 관찰된다. 그러나 몽골, 미얀마는 북한에 비해서 대중국 교역 의존도 증가 추세는 상대적으로 완만하다. 다음으로, 본고에서 설정한 최종 관측연도인 2017년 한해에 대해 횡단면 비교를 실시하였다. 횡단면 비교에서는 대중국 교역 의존도를 수출입 의존도로 세분화하여 비교하고, 대중국 GDP 의존도를 추가하여 비교했다. 그 결과 2017년 북한의 대중국 수출입 의존도 모두 전세계, 아시아, 중국 접경 국가들 중 가장 높은 순위를 기록했다. 특이한 점은 북한의 대중국 교역의존도는 수출보다 수입에서 높게 나타난 반면, 북한 다음으로 대중국 교역 의존도가 높은 몽골과 미얀마의 경우 수입보다 수출의 대중국 의존도가 높게 나타났다는 점이다. 대중국 GDP 의존도의 경우 북한은 중국 접경 국가들 중 몽골과 베트남 다음으로 의존도가 높은 국가로 확인된다. 추가적으로 2017년의 북한, 몽골 및 미얀마의 교역 특징을 알아보았다. 먼저 북한, 몽골, 미얀마의 대중 교역 품목을 비교한 결과 이들 3개국 모두 공통적으로 주로 석탄, 천연가스 등의 천연자원을 중국에 수출한다는 특징을 가진다. 그러나 수입의 경우 북한은 대두유와 같은 식량류와 합성 직물, 무선 전화기 등을 주로 수입하는 반면, 몽골과 미얀마는 산업 생산에 필요한 에너지 및 부속품을 주로 수입한다는 차이점이 있었다. 다음으로, 2017년 북한과 몽골, 미얀마가 가장 많이 교역한 중국의 성(省)을 비교해본 결과, 북한은 요녕성, 몽골은 내몽고자치구, 미얀마는 운남성과의 교역이 가장 많았다는 것을 확인 할 수 있었다. 이를 통해 대중 교역 의존도가 높은 3개 국가들이 중국과 국경을 접한 성(省)과 가장 교역을 많이 한다는 특징을 확인할 수 있었다.

A Study on the Application of the Price Prediction of Construction Materials through the Improvement of Data Refactor Techniques (Data Refactor 기법의 개선을 통한 건설원자재 가격 예측 적용성 연구)

  • Lee, Woo-Yang;Lee, Dong-Eun;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.66-73
    • /
    • 2023
  • The construction industry suffers losses due to failures in demand forecasting due to price fluctuations in construction raw materials, increased user costs due to project cost changes, and lack of forecasting system. Accordingly, it is necessary to improve the accuracy of construction raw material price forecasting. This study aims to predict the price of construction raw materials and verify applicability through the improvement of the Data Refactor technique. In order to improve the accuracy of price prediction of construction raw materials, the existing data refactor classification of low and high frequency and ARIMAX utilization method was improved to frequency-oriented and ARIMA method utilization, so that short-term (3 months in the future) six items such as construction raw materials lumber and cement were improved. ), mid-term (6 months in the future), and long-term (12 months in the future) price forecasts. As a result of the analysis, the predicted value based on the improved Data Refactor technique reduced the error and expanded the variability. Therefore, it is expected that the budget can be managed effectively by predicting the price of construction raw materials more accurately through the Data Refactor technique proposed in this study.

An Ecosystem Model and Content Research of the Satellite Information Utilization Business (위성정보 활용 사업의 생태계 모델과 콘텐츠 연구)

  • Seungkuk Baik ;Jinhwa Roh;Hyounjoo Shim;Xuanning Zhu
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1075-1084
    • /
    • 2023
  • Satellite-derived data is collected by observing the Earth and is used in various fields such as national defense, natural disasters, location-based services, infrastructure, environment, energy, marine, and insurance. This study aims to present the virtuous cycle structure of the satellite information data industry and the business ecosystem model of the industry. As a research method, cases were collected and categorized from the following areas: literature, online, application, and content. The results show that the ecosystem model of the satellite information data industry provides an approach to content services in public and commercial areas, and develops various algorithmic technologies to facilitate content production and services at the level of complex general-purpose technologies. Second, in terms of content typology, satellite information data can be subdivided into monitoring content, urban space monitoring content, and satellite information content. Third, the consumption value of satellite content could be subdivided into informational value, environmental, social and governance (ESG) value, educational value, and content value. In order to expand the global content market, Korea will need to focus on creating an ecosystem for the satellite information industry and discovering differentiated content. It will also need to increase the popularization and accessibility of data to the general public and promote the Korean K-Satellite Information Data Industry ecosystem through government support, policy efforts, and policies such as establishing legal systems, increasing investment, and training human resources.