DOI QR코드

DOI QR Code

Determination of Resistance Factors of Load and Resistance Factor Design for Drilled Shaft Based on Load Test

LRFD 설계를 위한 현장타설말뚝의 주면지지력 저항계수 산정

  • Kim, Seok-Jung (Dept. of Civil and Evironmental Engrg., Seoul National Univ.) ;
  • Kwon, Oh-Sung (Technology Research Institute, Daelim Industrial Co. Ltd.) ;
  • Jung, Sung-Jun (Coastal Engrg & Ocean Energy Research Department, Korea Ocean Research and Development Institute) ;
  • Han, Jin-Tae (Dept. of Civil & Evironmental Engrg., Seoul National Univ.) ;
  • Kim, Myoung-Mo (Dept. of Civil and Evironmental Engrg., Seoul National Univ.)
  • 김석중 (서울대학교 건설환경공학부) ;
  • 권오성 (대림산업(주) 기술연구소) ;
  • 정성준 (한국해양연구원 연안개발에너지연구부) ;
  • 한진태 (서울대학교 건설환경공학부) ;
  • 김명모 (서울대학교 건설환경공학부)
  • Received : 2010.04.23
  • Accepted : 2010.06.28
  • Published : 2010.07.31

Abstract

Load Resistance Factor Design method is used increasingly in geotechnical design world widely and resistance factors for drilled shafts are suggested by AASHTO. However, these resistance factors are determined for intact rock conditions; by comparison, most of bedrocks in Korea have weathered condition, so that applying the AASHTO resistance factors is not reasonable. Thus, this study suggests the proper resistance factors for design of drilled shaft in Korea. The 22 cases of pile load test data from 8 sites were chosen and reliability-based approach is used to analyze the data. Reliability analysis was performed by First Order Second Moment Method (FOSM) applying 4 bearing capacity equations. As a result, when the Factor of Safety (FOS) was selected as 3.0, the target reliability indexes (${\beta}_c$) were evaluated as 2.01~2.30. Resistance factors and load factors are determined from optimization based on above results. The resistance factors ranged between 0.48 and 0.56 and load factors for dead load and live load are evaluated as approximately 1.25 and 1.75 respectively. However, when the target reliabilities are considered as 3.0, the resistance factors are evaluated as approximately 50% of the results when the target reliability index was 2.0.

기초구조물의 설계에 있어 전세계적으로 하중저항계수설계법(LRFD)이 확산되는 추세이다. 현재 국내의 현장타설 말뚝 설계에 있어 AASHTO(2007)에서 제안한 저항계수를 이용하고 있지만, 이는 미국 내 분포하는 무결암에 대한 저항계수이며 지역적 가변성이 큰 저항계수의 특성상 국내 암반에 적용하기에 부적합하다. 따라서 본 연구에서는 국내에서 수행된 재하시험 자료를 이용하여 국내 지반에 적합한 저항계수를 산정하였다. 측정지지력 확인이 가능한 8개 현장의 재하시험 결과 중 22개의 자료를 이용하여 4가지의 지지력 공식에 대한 저항편향계수를 산정하였으며, 이를 이용하여 신뢰성분석을 수행하였다. 그 결과 현장타설말뚝의 안전율이 3.0일 때 목표 신뢰도지수는 약 2.01~2.30 으로 산정되었다. 또한 최적화를 이용하여 저항계수 및 하중계수를 산정한 결과 저항계수는 약 0.48~0.56, 사하 중계수는 약 1.25, 활하중 계수는 약 1.75로 산정되었다. 하지만 목표 신뢰도지수를 AASHTO에서 제안한 3.0을 이용하여 저항계수를 산정하면 목표 신뢰도지수 2.0을 적용하였을 때 산정한 저항계수의 약 50% 값을 가진다.

Keywords

References

  1. 윤홍준, 정성준, 김명모 (2007), 풍화암에 근입된 현장타설말뚝의 저항계수 산정, 한국지반공학회논문집, 제 21권 8호, pp.107-116.
  2. AASHTO (2007), AASHTO LRFD Bridge Design Specification, 4rd edition, AASHTO, Washington, D.C.
  3. Kunt O. Ronold (1999), "Reliability-Based Optimization of Design Code for Tension Piles", Jounal of Geotechnical and Geoenvironmental Engineering, pp.690-695.
  4. Ng, C. W. W., Li, J. H. M. and Yau, T. L. Y. (2001), "Behavior of Large Diameter Floating Bored Piles in Saprolitic Soils", Soil and Foundations, Vol.41, No.6, pp.37-52. https://doi.org/10.3208/sandf.41.6_37
  5. Nowak, A. S. (1995), NCHRP Report 368: Calibration of LRFD Bridge Design Code, Transportation Research Board, Washington, D.C.
  6. O'Neil, M. W., and Reese, L. C. (1999), Drilled Shafts: Construction Procedures and Design Methods. Publication No. FHWA-IF-99-025, U.S. Department of Transportation, Federal Highway Administraion, 1999.
  7. Sumanta Haldar and G. L. Sivajumar Babu (2008), "Load Resistance Factor Design of Axially Loaded Pile Based on Load Test Results", Jounal of Geotechnical and Geoenvironmental Engineering, pp. 1106-1117.