• Title/Summary/Keyword: 에너지 분포

Search Result 2,316, Processing Time 0.027 seconds

Evaluation of the dose distribution in Mapcheck using Enhanced Dynamic Wedge (Enhanced Dynamic Wedge를 사용한 Mapcheck에서의 선량분포 평가)

  • Kang, Su-Man;Jang, Eun-Sun;Lee, Byung-Koo;Jung, Bong-Jae;Shin, Jung-Sub;Park, Cheol-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.343-349
    • /
    • 2012
  • Intensity Modulated Radiotherapy (IMRT) is increasing its use recently due to its benefits of minimizing the dose on surrounding normal organs and being able to target a high dose specifically to the tumor. The study aims to measure and evaluate the dose distribution according to its dynamic changes in Mapcheck. In order to verify the dose distribution by EDW angle($10^{\circ}$,$15^{\circ}$,$20^{\circ}$,$25^{\circ}$,$30^{\circ}$,$45^{\circ}$,$60^{\circ}$), field size (asymmetric field) and depth changes (1.5 cm, 5.0 cm) using IMRT in Clinac ix, a solid phantom was placed on the Mapcheck and 100MU was exposed by 6 MV, 10MV X-ray. Using a 6MV, 10MV energy, the percentage depth dose according to a dynamic changes at a maximum dose depth (1.5 cm) and at 5.0 cm depth showed the value difference of maximum 0.6%, less than 1%, which was calculated by a treatment program device considering the maximum dose depth at the center as 100%, the percentage depth dose was in the range between 2.4% and 7.2%. Also, the maximum value difference of a percentage depth dose was 4.1% in Y2-OUT direction, and 1.7% in Y1-IN direction. When treating a patient using a wedge, it is considered that using an enhanced dynamic wedge is effective to reduce the scattered dose which induces unnecessary dose to the surroundings. In particular, when treating a patient at clinic, a treatment must be performed considering that the wedge dose in a toe direction is higher than the dose in a heel direction.

Characteristics of Recent Foraminifera and Surface Sediments in Gomso- Bay Tidal Flat, West Coast of Korea: Potential for Paleoenvironmental Interpretations (곰소만 조간대의 현생 유공충과 표층 최적물의 특성: 고환경 해석에 적용 가능성)

  • 우한준;장진호
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.184-196
    • /
    • 1995
  • The line-SW is located in the mouth of Gomso Bay (20 Km long and 5-8 Km wide),west coast of Korea. This area is composed of sand flat, mud flat, sand shoal and chenier, The difference of physical, geological and geomorphic conditions in subenvironments of the bay may control and produce distingtive foraminiferal populations and assemblages. This study investigates whether five a priori subenvironments (five local zonations) in Gomso-Bay tidal flat can be distinguished from each other on the basis of total (living plus dead) foraminiferal assemblages. Seventy-four species (67 benthic; 7 planktonic) were recorded in total assemblages of surface sediments from 10 stations. Ammonia beccarii tepida, Discorbis candeiana, Elphidium etigoense and Eponides nipponicus were most dominant species in living and total assemblages. The relative abundance (%) of living population was high at upper flat and decreased from upper to lower flat. The low percentages of living populations in middle to lower flat are probably influenced by the decreasing reproduction of foraminifera caused by high energy condition and addition of dead species from offshore. The occurence of planktonic foraminifera in middle to lower flat (5.3∼6.6%) indicates introduction of planktonic foraminifera from offshore by storm and/or tidal current. The relatively high numbers of species in lower middle to lower flat are probably caused by a mixing of faunas from these areas and offshore. The high numbers of total individuals per 50 ml of sediment in upper flat indicate that this area is a relatively stable environment where waves and currents are protected by the chenier. Five biofacies of the total foraminiferal assemblages were established on the basis of dominant species (those representing more than 20% of the total assemblages in any station) in the five a priori subenvironments recognized along the Line-SW transect in Gomso-Bay tidal flat. Five biofacies are potentially useful in paleoenvironmental interpretation in late Quaternary Gomso-Bay tidal deposits.

  • PDF

Review of Remote Sensing Studies on Groundwater Resources (원격탐사의 지하수 수자원 적용 사례 고찰)

  • Lee, Jeongho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.855-866
    • /
    • 2017
  • Several research cases using remote sensing methods to analyze changes of storage and dynamics of groundwater aquifer were reviewed in this paper. The status of groundwater storage, in an area with regional scale, could be qualitatively inferred from geological feature, surface water altimetry and topography, distribution of vegetation, and difference between precipitation and evapotranspiration. These qualitative indicators could be measured by geological lineament analysis, airborne magnetic survey, DEM analysis, LAI and NDVI calculation, and surface energy balance modeling. It is certain that GRACE and InSAR have received remarkable attentions as direct utilization from satellite data for quantification of groundwater storage and dynamics. GRACE, composed of twin satellites having acceleration sensors, could detect global or regional microgravity changes and transform them into mass changes of water on surface and inside of the Earth. Numerous studies in terms of groundwater storage using GRACE sensor data were performed with several merits such that (1) there is no requirement of sensor data, (2) auxiliary data for quantification of groundwater can be entirely obtained from another satellite sensors, and (3) algorithms for processing measured data have continuously progressed from designated data management center. The limitations of GRACE for groundwater storage measurement could be defined as follows: (1) In an area with small scale, mass change quantification of groundwater might be inaccurate due to detection limit of the acceleration sensor, and (2) the results would be overestimated in case of combination between sensor and field survey data. InSAR can quantify the dynamic characteristics of aquifer by measuring vertical micro displacement, using linear proportional relation between groundwater head and vertical surface movement. However, InSAR data might now constrain their application to arid or semi-arid area whose land cover appear to be simple, and are hard to apply to the area with the anticipation of loss of coherence with surface. Development of GRACE and InSAR sensor data preprocessing algorithms optimized to topography, geology, and natural conditions of Korea should be prioritized to regionally quantify the mass change and dynamics of the groundwater resources of Korea.

Dose Distribution and Characterization for Radiation Fields of Multileaf Collimateor System (방사선 입체조형치료용 다엽콜리메이터의 특성과 조직내 선량분포 측정)

  • Chu, Sung-Sil;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.14 no.1
    • /
    • pp.77-85
    • /
    • 1996
  • Purpose : Multileaf collimator(MLC) is very suitable tool for conformal radio-therapy and commissioning measurements for a multileaf collimator installed on a dual energy accelerator with 6 and 10MV photons are required, For modeling the collimator with treament planning software, detailed dosimetric characterization of the multileaf collimator including the penumbra width, leaf transmission between leaf leakage and localization of the leaf ends and sides is an essential requirement. materials and Methods : Measurement of characteristic data of the MLC with 26 pair block leaves installed on CLINAC 2100C linear accelerator was performed. Low sensitive radiographic film(X-omatV) was used for the penumbra measurement and separate experiments using radiographic film and thermoluminescent dosimeters were performed to verify the dose distribution, Measured films were analized with a photodensitometer of WP700i scanner. Results : For 6 & 10 MV x-ray energies, approximately $2.0\%$ of photons incident on the multileaf collimator were transmitted and an additional $0.5\%$ leakage occurs between the leaves. Localizing the physical end of the leaves showed less than 1mm deviation from the $50\%$ decrement line and this difference is attributed to the curved shaped end on the leaves One side of a sin히e leaf corresponded to the $50\%$ decrement line, but the opposite face was aligned with a lower value. This difference is due to the tongue and groove used to decrease between leaf leakage. Alignment of the leaves to form a straight edge resulted larger penumbra at far position from isocenter as compare with divergent alloy blocks. When the MLC edge is stepped by sloping field, the isodose lines follow the leaf pattern and Produce scalloping isodose curves in tissue. The effective penumbra by 45 degree stepped MLC is about 10mm at 10cm depth for 6MV x-ray. The difference of effective penumbra in deep tissue between MLC and divergent alloy blocks is small (5mm). Conclusion : Using the characteristic data of MLC, the MLC has the clinlical acceptability and suitability for 3-D conformal radiotherapy except small field size.

  • PDF

Importance of Microtextural and Geochemical Characterizations of Soils on Landslide Sites (산사태지역 토층의 미세조직과 지화학적 특성의 중요성)

  • Kim Kyeong-Su;Choo Chang-Oh;Booh Seong-An;Jeong Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.15 no.4 s.42
    • /
    • pp.447-462
    • /
    • 2005
  • The purposes of this study are to evaluate and discuss the importance of geochemical properties of soil materials that play an important role in the occurrence of the landslide, using analyses of microtexture, particle size distribution, XRC, and FE-SEM equipped with energy dispersive spectrum on soils collected from landslide slopes of gneiss, granite and sedimentary rock areas. Soils from gneiss and granite areas where landslides took place have much clay content relative to those from non landslide areas, particularly pronounced in the granite area. Therefore the clay content is considered a sensitive factor on landslide. Clay minerals contained in soils are illite, chlorite, kaolinite and montmorillonite. Especially the content of clay minerals in soils from the Tertiary sedimentary rocks is highest, with abundant montmorillonite as expandable species. It is believed that this area was much vulnerable to landslide comparable to other areas because of its high content of monoorillonite, even though there might be weak precipitation. Since no conspicuous differentiation in mineralogy between the landslide area and non landslide area can be made, the occurrence of landslide may be influenced not by mineralogy, but by local geography and mechanical properties of soils. Geochemical information on weathering properties, mineralogy, and microtexture of soils is helpful to better understand the causes and patterns of landslide, together with engineering geological analyses.

Association of the RORA Gene Polymorphism and Seasonal Variations in Mood and Behavior (RORA 유전자 다형성과 기분 및 행동의 계절성 변동의 연관성)

  • Kim, Hae-In;So, Soo-Jung;Yang, Hee Jung;Song, Hyun Mi;Moon, Joung Ho;Yoon, Ho-Kyoung;Kang, Seung-Gul;Park, Young-Min;Lee, Seung-Hwan;Kim, Leen;Lee, Heon-Jeong
    • Sleep Medicine and Psychophysiology
    • /
    • v.20 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Objectives: Several evidence has been suggested that the circadian gene variants contribute to the pathogenesis of seasonal affective disorder. In this study, we aimed to investigate the polymorphism in RORA (Retinoid-related orphan receptor A) gene in relation to seasonal variations among healthy young adults in Seoul, Korea. Methods: A total of 507 young healthy adult subjects were recruited by advertisement. Seasonal variations were assessed by the Seasonality Pattern Assessment Questionnaire (SPAQ). Single-nucleotide polymorphism in the RORA rs11071547 gene was genotyped by PCR in 507 individuals. Considering summer type as confounding factor, we conducted analysis 478 subjects except 29 subjects of summer type. The Chi-square test was conducted to compare differences between groups of seasonals and non-seasonals. Association between genotypes and Global Seasonality Score (GSS) were tested using ANCOVA (Analysis of covariance). Results: In this sample, the prevalence of SAD was 12.1% (winter type 9.3%, summer type 2.8%). There is no significant difference in genotyping distribution of RORA rs11071547 between groups of seasonals and non-seasonals. Global seasonality score (GSS) and scores of all subscales except body weight and appetite were not significantly different between the group with C allele homozygote and the group with T allele homozygote and heterozygote (p-value 0.138). Scores of body weight and appetite were significantly higher in group with C allele homozygotes. Conclusion: These results suggest that RORA gene polymorphism play a role in seasonal variations in appetite and body weight and is associated with susceptibility to seasonal affective disorder in some degree in the population studied.

Dosimetric Characteristics of Dual Photon Energy Using Independent Collimator Jaws (고에너지 선형가속기의 Independent Collimator를 이용한 비대칭 방사선 조사시 방사선량 결정에 미치는 요인에 관한 연구)

  • Kim Jeung-kee;Choi Young-Min;Lee Hyung-Sik;Hur Won-Joo
    • Radiation Oncology Journal
    • /
    • v.14 no.3
    • /
    • pp.237-244
    • /
    • 1996
  • Purpose : The accurate dosimetry of independent collimator equipped for 6MV and 15MV X-ray beam was investigated to search for the optimal correction factor. Materials and Methods : The field size factors, beam quality and dose distribution were measured by using 6MV, 15MV X-ray Field size factors were measured from $3{\times}3cm^2$ to $35{\times}35cm^2$ by using 0.6cc ion chamber (NE 2571) at Dmax. Beam qualities were measured at different field sizes, off-axis distances and depths. Isodose distributions at different off-axis distance using $10\times10cm^2$ field were also investigated and compared with symmetric field. Result: 1) Relative field size factors was different along lateral distance with maximum changes in $3.1\%$ for 6MV and $5\%$ for 15MV. But the field size factors of asymmetric fields were identical to the modified central-axis values in symmetric field, which corrected by off-axis ratio at Dmax. 2) The HVL and PDD was decreased by increasing off-axis distance. PDD was also decreased by increasing depth For field size more than $5{\times}cm^2$ and depth less than 15cm, PDD of asymmetric field differs from that of symmetric one ($0.5\~2\%$ for 6MV and $0.4\~1.4\%$ for 15MV). 3) The measured isodose curves demonstrate divergence effects and reduced doses adjacent to the edge close to the flattening filter center was also observed. Conclusion . When asymmetric collimator is used, calculation of MU must be corrected with off-axis and PDD with a caution of underdose in central axis.

  • PDF

Numerical and Experimental Study on the Coal Reaction in an Entrained Flow Gasifier (습식분류층 석탄가스화기 수치해석 및 실험적 연구)

  • Kim, Hey-Suk;Choi, Seung-Hee;Hwang, Min-Jung;Song, Woo-Young;Shin, Mi-Soo;Jang, Dong-Soon;Yun, Sang-June;Choi, Young-Chan;Lee, Gae-Goo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.165-174
    • /
    • 2010
  • The numerical modeling of a coal gasification reaction occurring in an entrained flow coal gasifier is presented in this study. The purposes of this study are to develop a reliable evaluation method of coal gasifier not only for the basic design but also further system operation optimization using a CFD(Computational Fluid Dynamics) method. The coal gasification reaction consists of a series of reaction processes such as water evaporation, coal devolatilization, heterogeneous char reactions, and coal-off gaseous reaction in two-phase, turbulent and radiation participating media. Both numerical and experimental studies are made for the 1.0 ton/day entrained flow coal gasifier installed in the Korea Institute of Energy Research (KIER). The comprehensive computer program in this study is made basically using commercial CFD program by implementing several subroutines necessary for gasification process, which include Eddy-Breakup model together with the harmonic mean approach for turbulent reaction. Further Lagrangian approach in particle trajectory is adopted with the consideration of turbulent effect caused by the non-linearity of drag force, etc. The program developed is successfully evaluated against experimental data such as profiles of temperature and gaseous species concentration together with the cold gas efficiency. Further intensive investigation has been made in terms of the size distribution of pulverized coal particle, the slurry concentration, and the design parameters of gasifier. These parameters considered in this study are compared and evaluated each other through the calculated syngas production rate and cold gas efficiency, appearing to directly affect gasification performance. Considering the complexity of entrained coal gasification, even if the results of this study looks physically reasonable and consistent in parametric study, more efforts of elaborating modeling together with the systematic evaluation against experimental data are necessary for the development of an reliable design tool using CFD method.

Relation Between Nutritional Factors and Bone Status by Broadband Ultrasound Attenuation among College Students (대학생의 골초음파 상태에 영향을 미치는 영양요인 분석)

  • Kwon, Se-Mi;Lee, Byung-Kook;Kim, Hee-Seon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.11
    • /
    • pp.1551-1558
    • /
    • 2009
  • The management of skeletal health in the twenties is the number one priority for preventing fracture or osteoporosis occurrence in later life cycle. Therefore, the factors influencing bone mineral density were examined by anthropometric measurements, food intakes, bone mineral density and biochemical nutritional indexes in blood among college students. Among the students who received health examinations from May to December, 2007, 532 male and 507 female students who agreed to participate in the study were selected. Nutritional intakes were estimated with 3-day 24-hour recall method. Bone mineral density was measured by ultrasonic attenuation passing through right calcaneus bone and expressed as broadband ultrasound attenuation and t-score was calculated by WHO criteria. Red blood cell count, hemoglobin, hematocrit values were measured by whole blood analysis, and alkaline phosphatase, serum calcium and serum iron were used as indexes for biochemical nutritional status. Data analysis was conducted using SPSS 14.0 program, and protecting and risk factors on bone health status were analyzed by logistic regression analysis between normal bone health group (t-score$\underline{\geq}$ -1.0) and osteopenia group (t-score<-1.0). The results showed that more people belong to the normal bone health group probably because this study was conducted among those with their peak bone density. Biochemical nutritional status and nutrition intakes of both groups for normal and osteopenia did not show statistically significant difference except MCHC, animal protein and animal iron intakes in female. According to the results of logistic regression analyses, dietary intakes of animal protein, animal iron and zinc showed protecting effects against osteopenia. Therefore, dietary nutritional intakes of micronutrients, especially iron and zinc are important for bone health of young people.

Supplemental Lighting by HPS and PLS Lamps Affects Growth and Yield of Cucumber during Low Radiation Period (약광기 HPS와 PLS lamp를 이용한 오이의 보광재배효과)

  • Kwon, Joon-Kook;Yu, In-Ho;Park, Kyoung-Sub;Lee, Jae-Han;Kim, Jin-Hyun;Lee, Jung-Sup;Lee, Dong-Soo
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.400-406
    • /
    • 2018
  • In this experiment the effect of supplemental lighting on the growth and yield of cucumber (Cucumis sativus L. 'Fresh') plants during low radiation period of winter season were investigated in glasshouses using common high-pressure sodium (HPS) lamps and newly developed plasma lighting system (PLS) lamps. Plants grown without supplemental lighting were considered as a control. Supplemental lighting was provided from November 20th, 2015 to March 15th, 2016 to ensure 14-hour photoperiod (natural+supplemental light), also lamps were operated automatically when the outside sun radiation levels were less than $100W{\cdot}m^{-2}$. Spectral analysis showed that HPS lamp had a discrete spectrum, lacked of the radiation in the 400-550 nm wave band (blue-green light), but had a high output in the orange-red region (550-650 nm). A higher red light output resulted in an increased red to far-red (R/FR) ratio in HPS lamp. PLS had a continuous spectrum and had a peak radiation in green region (490-550 nm). HPS has 12.6% lower output in photosynthetically active radiation (PAR) but 12.6% higher output in near infra-red (NIR) spectral regions compared to PLS. Both HPS and PLS lamps emitted very low levels of ultra-violet radiation (300-400 nm). Supplemental lighting both from HPS and PLS lamps increased plant height, leaf number, internode number and dry weight of cucumber plants compared to control. Photosynthetic activity of cucumber plants grown under two supplemental lighting systems was comparable. Number of fruits per cucumber plant (fruit weight per plant) in control, PLS, and HPS plots were 21.2 (2.9 kg), 38.7 (5.5 kg), and 40.4 (5.6 kg), respectively, thereby increasing yield by 1.8-1.9 times in comparison with control. An analysis of the economic feasibility of supplemental lighting in cucumber cultivation showed that considering lamp installation and electricity costs the income from supplemental lighting increased by 37% and 62% for PLS and HPS lamps, respectively.