• Title/Summary/Keyword: 에너지 보강

Search Result 423, Processing Time 0.024 seconds

Development of Simplified Hystersis Model of Boundary Column of Shear Wall for the Nonlinear Analysis (비선형 해석을 위한 전단벽 보강기둥의 단순 반복이력 모델 개발)

  • 이영욱
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.145-153
    • /
    • 1997
  • 전단벽제 양단의 보강기둥은 비선형 휨거동에 주요 영향을 미치는 구조 요소이다. 본 연구에서는 전단 벽체에 일반적으로 사용되는 모델인 TVLEM에서, 수직 스프링 요소로 표현되는 보강기둥의 반복이력 모델을 제안하고 기존의 모델과 비교 검토하였다. 제안된 단순모델은 Vulcano의 모델 중 철근의 거동을 이중직선으로 가정하여 유도되었으며, 제안된 모델을 검증하기 위하여 Vulcano와 Kabeyasawa의 모델 사용시의 수치해석 값과 비교하였다. 비선형 해석은 자체 개발된 프로그램을 사용하였으며, Vallenas와 Bertero가 실험(1979)한 SP6의 모델에 대하여 수치해석을 수행하여 반복이력특성과 변위이력 및 발산에너지량을 비교하였다.

Flexural toughness density of High Performance Fiber Reinforced Cementitious Composites (고인성 섬유보강 시멘트 복합재료의 휨인성 밀도)

  • Kim, Dong-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.401-402
    • /
    • 2010
  • This research initially suggest flexural toughness density as a key parameter describing energy absorption capacity of High Performance Fiber Reinforced Cementitious Composites [HPFRCC] regardless of the size of specimen. Two types of high strength steel fibers, Hooked and Twisted fiber, were used in two types of flexural specimen ($100{\times}100{\times}350mm^3$ and $150{\times}150{\times}500mm^3$) to estimate and validate the flexural toughness density.

  • PDF

Analysis of Ship Collision Behavior on Offshore Windtower (해상풍력발전타워의 선박충돌 거동에 대한 연구)

  • Park, Jun-Seok;Lee, Gye-Hee;Phu, Tran Duc
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.610-613
    • /
    • 2011
  • 본 논문에서는 해상풍력발전기와 선박의 충돌시 타워와 기초보강재의 거동에 대하여 연구하였다. 풍력발전기는 5MW급 풍력발전기를 나셀, 타워, 보강재, 바닥판, 기초로 나누어서 모델링 하였다. 나셀은 집중질량으로 타워의 상부에 위치하였고 타워, 보강재, 바닥판은 탄소성거동을 한다고 가정하여 Shell 요소로 모델링 하였다. 선박은 풍력발전기와 마찬가지로 탄소성거동을 한다고 가정하였고 실제모델에 대해 풍력발전기와의 정면충돌로 고려하였으며, 충돌속도는 2.0m/sec로 가정하였다. 선박과 풍력발전기의 충돌 해석은 비선형 해석 프로그램인 ABAQUS/Explicit을 이용하여 수행하였으며, 이를 통하여 선박충돌시 타워와 보강재의 거동을 분석하였다. 해석결과 타워에서 대부분의 에너지를 소산하는 것으로 나타났다.

  • PDF

Seismic Behavior of Concrete-Filled HSS Bracing Members Reinforced by Rib (리브 보강된 콘크리트 충전 HSS 가새부재의 이력 거동)

  • Han, Sang Whan;Yeo, Seung Min;Kim, Wook Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.53-62
    • /
    • 2005
  • The purpose of this study is to improve the seismic behavior of the bracing members. Lee and Goel's (1987) concrete filling in the hollow structural section (HSS) reduced the severity of local buckling and increased the fracture life. However, concrete filling in the HSS did not prevent the occurrence of local buckling in the midsection of the bracing member, which resulted in continuous strength degradation. This study investigated the seismic behavior of the concrete-filled HSS bracing member, which is reinforced by ribs in the midsection of the bracing member. The main variable of the specimens is rib length. The test results showed that buckling mode, cyclic compression strength, and energy dissipation capacity of the bracing members were affected by rib length. Specimen reinforced with ribs with a length of 63% had better structural performance.

Flexural and Punching Behaviors of Concrete Strengthening with FRP Sheets and Steel Fibers under Low-Velocity Impact Loading (FRP 시트 및 강섬유 보강 콘크리트의 저속 충격에서의 휨 및 펀칭 파괴 거동)

  • Min, Kyung-Hwan;Shin, Hyun-Oh;Yoo, Doo-Yeol;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • In this study, in order to observe the behaviors of fiber reinforced polymer (FRP) strengthened and steel fiber reinforced concrete specimens for impact and static loads, flexural and punching tests were performed. For the one-way flexural and two-way punching tests, concrete specimens with the dimensions of $50{\times}100{\times}350$ mm and $50{\times}350{\times}350$ mm were fabricated, respectively. The steel fiber reinforced concrete specimens showed much enhanced resistance on two-way punching of static and impact loads. In addition the FRP strengthening system provided the outstanding performance under a punching load. Because of a large tensile strength and toughness of ultra high performance concrete (UHPC), the UHPC specimens retrofitted with FRP showed marginally enhanced strength and energy dissipating capacity.

An Experimental Study for Reinforcement Effect of Adhesive Stiffeners Depending on the Aspect Ratio of Masonry Wall (조적벽체의 형상비에 따른 접착형 보강재의 보강효과에 관한 실험적 연구)

  • Park, Byung-Tae;Kwon, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.13-20
    • /
    • 2017
  • Unreinforced masonry buildings are vulnerable to lateral forces, such as earthquakes, owing to the nature of the building materials, yet numerous masonry buildings remain in South Korea. Since the majority of the existing masonry buildings were constructed more than 20 years ago, it is necessary to develop economical reinforcement methods for disaster reduction. In this study, external reinforcement of masonry walls using adhesive stiffeners was proposed as a reinforcement method for such age-old masonry buildings. Six specimens were fabricated with different aspect ratios (L/H = 1.0, 1.3, and 2.0) and used in static load tests to verify the reinforcement effect. The experimental results showed that the masonry walls before and after reinforcement were ruptured by rigid body rotation and slip. In addition, the maximum strength, maximum displacement, and dissipated energy of the walls were shown to increase after applying the adhesive stiffeners, thereby verifying the excellent reinforcement effect. Furthermore, an adhesive stiffener design for unreinforced masonry walls was proposed based on the increased shear strength achieved by using conventional glass fibers. The proposed design can be used as a basis for the application of adhesive stiffeners for unreinforced masonry walls.

Seismic Resistance of Masonry Walls Strengthened with Unbonded Prestressed Steel Bars and Glass Fiber Grids (강봉 및 유리섬유로 비부착 보강된 조적벽체의 내진 저항성 평가)

  • Baik, Ji-Sung;Yang, Keun-Hyeok;Hwang, Seung-Hyeon;Choi, Yong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.17-26
    • /
    • 2020
  • This study examined the structural effectiveness of the unbonded technique originally developed for seismic strengthening of unreinforced masonry walls on the basis of the prestressed steel bars and glass fiber (GF) grids. The masonry walls were strengthened by using individual steel bars or GF grids and their combination. Test results showed that the proposed technique was favorable in enhancing the strength, stiffness, and ductility of the masonry walls. When compared with the lateral load capacity, stiffness at the ascending branch of the lateral load-displacement curve, and energy dissipation capacity of the unstrengthened control wall, the increasing ratios were 110%, 120%, and 360%, respectively, for the walls strengthened with the individual GF grids, 140%, 130%, and 510%, respectively, for the walls strengthened with the individual steel bars, and 160%, 130%, and 840%, respectively, for the walls strengthened with the combination of steel bars and GF grids. The measured lateral load capacities of masonry walls strengthened with the developed technique were in relatively good agreement with the predictions by the equations proposed by Yang et al. Overall, the developed technique is quite promising in enhancing the seismic performance of unreinforced masonry walls.

In-plane and Out-of-plane Seismic Performances of Masonry Walls Strengthened with Steel-Bar Truss Systems (강봉 트러스 시스템으로 보강된 조적벽체의 면내·외 내진 거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sanghee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • This experimental study was conducted to evaluate the in-plane and out-of-plane seismic performances of an unreinforced masonry walls (URMs) strengthened with prestressed steel-bar truss systems developed in the present investigation. The truss systems were installed on both faces of the walls. All the wall specimens were subjected to lateral in-plane or out-of-plane cyclic loads at the fixed gravity stress of 0.25 MPa. The seismic performance of the strengthened specimens was compared to that measured in the counterpart URM. When compared with the lateral load-displacement curve of the URM, the strengthened walls exhibited the following improvements: 190% for initial stiffness, 180% for peak strength, 610% for accumulated energy dissipation capacity, and 510% for equivalent damping ratio under the in-plane state; the corresponding improvements under the out-of-plane state were 230% for initial stiffness, 190% for peak strength, 240% for accumulated energy dissipation capacity, and 120% for equivalent damping ratio, respectively. These results indicate that the developed technique is very promising in enhancing the overall seismic performance of URM.

Seismic Performance of Special Reinforced Concrete Coupling Beams with Different Reinforcement Details (보강상세에 따른 특수전단벽 연결보의 내진성능)

  • Chun, Young-Soo;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2015
  • Coupling beams posses proper strength, stiffness and ductility capacities to resist efficiently under seismic loads. The strength, stiffness and ductility capacities for special diagonally reinforced concrete coupling beam with a span-to-depth ratio 2.0 or less is higher than those of coupling beam with conventionally reinforced concrete coupling beam. However, diagonally reinforced detailing creates major construction problem. In this study, design alternatives for diagonally reinforced concrete coupling beams were experimentally investigated. The results show that angle reinforced coupling beam(specimen SA) exhibited a better stable behavior in comparison with non-diagonally coupling beams(specimens SB-series) and sustained corresponding drift ratio, peak-to-peak stiffness and cumulative dissipated energy in comparison to diagonally coupling beam(specimen CA).

On the Grounding Damage of Ship Bottom Stiffened Platings(Part I: Experiment) (좌초시 선저보강판의 손상에 관한 연구(제1보: 실험))

  • Jeom-K. Paik;Myung-H. Hyun;Tak-K. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.121-132
    • /
    • 1994
  • The aim of the present paper is to clarify the damage characteristics fur ship bottom stiffened platings in grounding. For this purpose, a series of tests are performed. A rigid wedge is quasi-statically pushed into the high tensile steel plates with two stiffeners. The aspect ratio of plates(a/B) is in the range from 1.0 to 2.5 and the thickness of plates is in the range from 3.4 to 7.0mm. Also other parameters, namely the shape of wedge tip, wedge angle and property/direction of stiffeners are varied. The test is carried out using the 100ton universal test machine. During the loading. both applied force and length of cutting(penetration) resulting in the grounding force-penetration response are measured.

  • PDF