DOI QR코드

DOI QR Code

Flexural and Punching Behaviors of Concrete Strengthening with FRP Sheets and Steel Fibers under Low-Velocity Impact Loading

FRP 시트 및 강섬유 보강 콘크리트의 저속 충격에서의 휨 및 펀칭 파괴 거동

  • Min, Kyung-Hwan (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Shin, Hyun-Oh (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yoo, Doo-Yeol (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yoon, Young-Soo (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 민경환 (고려대학교 건축사회환경공학부) ;
  • 신현오 (고려대학교 건축사회환경공학부) ;
  • 류두열 (고려대학교 건축사회환경공학부) ;
  • 윤영수 (고려대학교 건축사회환경공학부)
  • Received : 2010.04.26
  • Accepted : 2010.12.09
  • Published : 2011.02.28

Abstract

In this study, in order to observe the behaviors of fiber reinforced polymer (FRP) strengthened and steel fiber reinforced concrete specimens for impact and static loads, flexural and punching tests were performed. For the one-way flexural and two-way punching tests, concrete specimens with the dimensions of $50{\times}100{\times}350$ mm and $50{\times}350{\times}350$ mm were fabricated, respectively. The steel fiber reinforced concrete specimens showed much enhanced resistance on two-way punching of static and impact loads. In addition the FRP strengthening system provided the outstanding performance under a punching load. Because of a large tensile strength and toughness of ultra high performance concrete (UHPC), the UHPC specimens retrofitted with FRP showed marginally enhanced strength and energy dissipating capacity.

이 연구에서는 FRP와 강섬유로 보강한 콘크리트 시편의 충격하중과 정적하중에서의 거동을 보기 위해 휨 실험과 펀칭 실험을 수행하였다. 1방향 휨 실험과 2방향 펀칭 실험에서 콘크리트 시편은 각각 $50{\times}100{\times}350$ mm와 $50{\times}350{\times}350$ mm의 크기로 제작하였다. 0.75% 혼입률의 강섬유 보강 콘크리트는 2방향 충격하중 및 정적하중에서 높은 저항 성능을 보였다. 일반 콘크리트와 강섬유 보강 콘크리트에서 FRP 보강은 높은 성능 증가를 보였다. 초고성능 콘크리트는 콘크리트 자체가 가지고 있는 높은 인장강도와 인성으로 인해, CFRP로 보강한 경우 강도와 에너지 소산 능력이 크게 증가하지 않았다.

Keywords

References

  1. 김무한, 김재환, 김용로, 김영덕, “마이크로 및 매크로 섬유에 의해 보강된 고인성 시멘트 복합재료의 역학적 특성에 관한 실험적 연구,” 콘크리트학회 논문집, 17권, 2호, 2005, pp. 263-271. https://doi.org/10.4334/JKCI.2005.17.2.263
  2. 윤현도, 양승일, 한병찬, 전에스더, 김선우, “고인성 섬유 보강 시멘트 복합체의 인장강성 특성에 관한 실험적 연구,” 대한건축학회논문집 구조계, 21권, 10호, 2005, pp. 27-36.
  3. 김영우, 민경환, 양준모, 윤영수, “하이브리드 PVA 섬유를 이용한 HPFRCCs의 휨 및 충격 성능 평가,” 콘크리트학회 논문집, 21권, 6호, 2008, pp. 705-712. https://doi.org/10.4334/JKCI.2009.21.6.705
  4. Li, V. C., “On Engineered Cementitious Composites (ECC)-A Review of the Material and Its Applications,” J. Adv. Con. Tech., Vol. 1, No. 3, 2003, pp. 215-230. https://doi.org/10.3151/jact.1.215
  5. Bindiganavile, V., Banthia, N., and Aarup, B., “Impact Response of Ultra-High-Strength Fiber-Reinforced Cement Composite,” ACI Mater. J., Vol. 99, No. 6, 2002, pp. 543-548.
  6. Habel, K. and Gauvreau, P., “Response of Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) to Impact and Static Loading,” Cement Concrete Comp., Vol. 30, 2008, pp. 938-946. https://doi.org/10.1016/j.cemconcomp.2008.09.001
  7. Rao, H. S., Ghorpade, V. G., Ramana, N. V., and Gnanwswar, K., “Response of SIFCON Two-Way Slabs under Impact Loading,” Int. J. Imp. Eng., Vol. 37 No. 4, 2010, pp. 452-458. https://doi.org/10.1016/j.ijimpeng.2009.06.003
  8. Ngo, T., Mendis, P., Gupta, A., and Ramsay, J., “Blast Loading and Blast Effects on Structures - An Overview,” Elect. J. Struct. Eng., Special Issue: Loading on Structures, 2007, pp. 76-91.
  9. Chen, C. C. and Li, C. Y., “Punching Shear Strength of Reinforced Concrete Slabs Strengthened with Glass Fiber Reinforced Polymer Laminates,” ACI Struct. J., Vol. 102, No. 4, 2005, pp. 535-542.
  10. Buchan, P. A. and Chen, J. F., “Blast Resistance of FRP Composites and Polymer Strengthened Concrete and Masonry Structures–A State-of-the-art Review,” Compos. Part B, Vol. 38, Nos. 5-6, 2006, pp. 509-522.
  11. Malvar, L. J., Crawford, J. E., and Morrill K. B., “Use of Composites to Resist Blast,” J. Comp. Constr., ASCE, Vol. 11, No. 6, 2007, pp. 601-610. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:6(601)
  12. Silva, P. F. and Lu, B., “Improving the Blast Resistance Capacity of RC Slabs with Innovative Composite Materials,” Compos. Part B, Vol. 38, Nos. 5-6, 2007, pp. 523-534. https://doi.org/10.1016/j.compositesb.2006.06.015
  13. ACI Committee 440, Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, ACI 440.2R-02, American Concrete Institute, MI, USA, 2002, pp. 1-45.
  14. Bank, L. C., Composites for Construction: Structural Design with FRP Materials, John Wiley & Sons, NJ, USA, 2006, pp. 214-271.
  15. Teng, J. G., Chen, J. F., Smith, S. T., and Lam, L., FRPStrengthened RC Structures, John Wiley & Sons, West Sussex, England, 2002, pp. 31-46.
  16. Joh, C., Hwang, H., Choi, E. S, Park, J. J., and Kim, B. S., “Punching Shear Strength Estimation of UHPC Slabs,” Proc. 2nd Int. Symp. UHPC, Kassel, Germany, 2008, pp. 719-726.

Cited by

  1. Analytical Evaluation of High Velocity Impact Resistance of Two-way RC Slab Reinforced with Steel Fiber and FRP Sheet vol.17, pp.3, 2013, https://doi.org/10.11112/jksmi.2013.17.3.001
  2. Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Impact-Resistance Behavior under Impact Loading vol.25, pp.5, 2013, https://doi.org/10.4334/JKCI.2013.25.5.485
  3. Evaluation of Local Damages and Residual Performance of Blast Damaged RC Beams Strengthened with Steel Fiber and FRP Sheet vol.26, pp.5, 2014, https://doi.org/10.4334/JKCI.2014.26.5.627
  4. Punching and Local Damages of Fiber and FRP Reinforced Concrete under Low-Velocity Impact Load vol.08, pp.01, 2018, https://doi.org/10.4236/ojce.2018.81006