• Title/Summary/Keyword: 에너지 공간

Search Result 1,727, Processing Time 0.029 seconds

An Analytical Study on the Optimum Application of Diaphragm in Circular Steel Piers (원형강교각의 다이아프램 최적 적용에 관한 해석적 연구)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.91-96
    • /
    • 2007
  • To improve the land use of urban, Construction of the circular steel column is required recently. The circular steel columns have a advantage for improving a load carrying capacity as wall as reducing a effective section area. However, the circular steel columns under service load, such as earthquake, shows a tendency to cause local buckling and large deformation. To prevent these phenomena, use of diaphragm is considered. It is reported that longitudinal stiffeners has a effect on improving a buckling and fatigue performance of steel structures. The research of effect on diaphragm is not sufficient. Under monotonic and cyclic loadings diaphragm make a important role to prevent local buckling and deformation of used steel structures. Therefore, influence of diaphragm on performance of used steel structures is investigated. In this study, the influence of diaphragm on seismic and deformation performance of circular steel piers was investigated by using elastic-plastic finite element analysis considered geometrical and material non-linearity. The seismic performance of circular steel columns was evaluated for analytical parameter of manufactured part. The seismic performance of circular steel columns was clarified by comparing an energy dissipation of circular steel piers.

  • PDF

Classification of a Volumetric MRI Using Gibbs Distributions and a Line Model (깁스분포와 라인모델을 이용한 3차원 자기공명영상의 분류)

  • Junchul Chun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.58-66
    • /
    • 1998
  • Purpose : This paper introduces a new three dimensional magnetic Resonance Image classification which is based on Mar kov Random Field-Gibbs Random Field with a line model. Material and Methods : The performance of the Gibbs Classifier over a statistically heterogeneous image can be improved if the local stationary regions in the image are disassociated from each other through the mechanism of the interaction parameters defined at the local neighborhood level. This usually involves the construction of a line model for the image. In this paper we construct a line model for multisignature images based on the differential of the image which can provide an a priori estimate of the unobservable line field, which may lie in regions with significantly different statistics. the line model estimated from the original image data can in turn be used to alter the values of the interaction parameters of the Gibbs Classifier. Results : MRF-Gibbs classifier for volumetric MR images is developed under the condition that the domain of the image classification is $E^{3}$ space rather thatn the conventional $E^{2}$ space. Compared to context free classification, MRF-Gibbs classifier performed better in homogeneous and along boundaries since contextual information is used during the classification. Conclusion : We construct a line model for multisignature, multidimensional image and derive the interaction parameter for determining the energy function of MRF-Gibbs classifier.

  • PDF

Behavior of heavy metals in the surface waters of the Lake Shihwa and its tributaries (시화호와 주변 하천 표층수중의 중금속 거동 특성)

  • Kim Kyung Tae;Lee Soo Hyung;Kim Eun Soo;Cho Sung Rok;Park Chung Kil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.1
    • /
    • pp.51-67
    • /
    • 2002
  • In order to understand behaviors of heavy metals around the artificial Lake Shihwa in the vicinity of Kyunggi Bay in Korea in relation with huge environmental changes due to construction of huge artificial lake, water samples were collected from Lake Shihwa and its tributaries from 1996 to 1998 and analyzed. Due to extreme pollutant discharge from various kinds of anthropogenic sources such as the Banweol and Shihwa Industrial Complexes and cities, the Shihwa and its tributaries have been polluted in waters with various heavy metals. The enrichment factors of particulate heavy metals in water of streams and storm sewers were very high. All of the heavy metals observed in the waters showed relatively high temporal and spatial variations. In surface waters of the lake during the desalination after the dike establishment, spatial distributions of heavy metal concentrations were mainly controlled by various biogeochemical factors as well as input of industrial and municipal wastewaters, while, physical mixing was minor factor Pb and Co showed a strong affinity to particle phase, however the affinity to dissolved phase was dominated in Ni, Cu and Cd. Water quality of the artificial Lake Shihwa has been deteriorated by direct discharge of untreated wastewater and heavy metals have been accumulated in the lake system. Therefore, luther environmental improvement plan should be programmed subsequently.

  • PDF

Accuracy Assessment of the Satellite-based IMERG's Monthly Rainfall Data in the Inland Region of Korea (한반도 육상지역에서의 위성기반 IMERG 월 강수 관측 자료의 정확도 평가)

  • Ryu, Sumin;Hong, Sungwook
    • Journal of the Korean earth science society
    • /
    • v.39 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • Rainfall is one of the most important meteorological variables in meteorology, agriculture, hydrology, natural disaster, construction, and architecture. Recently, satellite remote sensing is essential to the accurate detection, estimation, and prediction of rainfall. In this study, the accuracy of Integrated Multi-satellite Retrievals for GPM (IMERG) product, a composite rainfall information based on Global Precipitation Measurement (GPM) satellite was evaluated with ground observation data in the inland of Korea. The Automatic Weather Station (AWS)-based rainfall measurement data were used for validation. The IMERG and AWS rainfall data were collocated and compared during one year from January 1, 2016 to December 31, 2016. The coastal regions and islands were also evaluated irrespective of the well-known uncertainty of satellite-based rainfall data. Consequently, the IMERG data showed a high correlation (0.95) and low error statistics of Bias (15.08 mm/mon) and RMSE (30.32 mm/mon) in comparison to AWS observations. In coastal regions and islands, the IMERG data have a high correlation more than 0.7 as well as inland regions, and the reliability of IMERG data was verified as rainfall data.

Analysis of Capacitance and Mobility of ZTO with Amorphous Structure (비정질구조의 ZTO 박막에서 커패시턴스와 이동도 분석)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.14-18
    • /
    • 2019
  • The conductivity of a semiconductor is primarily determined by the carriers. To achieve higher conductivity, the number of carriers should be high, and an energy trap level is created so that the carriers can cross the forbidden zone with low energy. Carriers have a crystalline binding structure, and interfacial mismatching tends to make them less conductive. In general, high-concentration doping is typically used to increase mobility. However, higher conductivity is also observed in non-orthogonal conjugation structures. In this study, the phenomena of higher conductivity and higher mobility were observed with space charge limiting current due to tunneling phenomena, which are different from trapping phenomena. In an atypical structure, the number of carriers is low, the resistance is high, and the on/off characteristics of capacitances are improved, thus increasing the mobility. ZTO thin film improved the on/off characteristics of capacitances after heat treating at $150^{\circ}C$. In charging and discharging tests, there was a time difference in the charge and discharging shapes, there was no distinction between n and p type, and the bonding structure was amorphous, such as in the depletion layer. The amorphous bonding structure can be seen as a potential barrier, which is also a source of space charge limiting current and causes conduction as a result of tunneling. Thus, increased mobility was observed in the non-structured configuration, and the conductivity increased despite the reduction of carriers.

Application of Hot Spot Analysis for Interpreting Soil Heavy-Metal Concentration Data in Abandoned Mines (폐금속 광산의 토양 중금속 오염 조사 자료 해석을 위한 핫스팟 분석의 적용)

  • LEE, Chae-Young;KIM, Sung-Min;CHOI, Yo-Soon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.2
    • /
    • pp.24-35
    • /
    • 2019
  • In this study, a hotspot analysis was conducted to suggest a new method for interpreting soil heavy-metal contamination data of abandoned metal mines according to statistical significance level. The spatial autocorrelation of the data was analyzed using the Getis-Ord $Gi{\ast}$ statistic in order to check whether soil heavy metal contamination data showing abnormal values appeared concentrated or dispersed in a specific space. As a result, the statistically significant data showing abnormal values in the mine area could be classified as follows: (1) the contamination degree and the hotspot value (z-score) were both high, (2) the contamination degree was high but the z-score was low, (3) the contamination degree was low but the z-score was high and (4) the contamination degree and the z-score were both low. The proposed method can be used to interpret the soil heavy metal contamination data according to the statistical significance level and to support a rational decision for soil contamination management in abandoned mines.

An Observation Study of the Relationship of between the Urban and Architectural Form and Microclimate (도시·건축형태와 미기후의 관계에 대한 관찰 연구)

  • Lee, Gunwon;Jeong, Yunnam
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.109-119
    • /
    • 2018
  • This study investigates the effect of urban and architectural forms on the microclimate in urban areas. It applies urban and architectural elements such as urban form and tissue and building form and characteristics as the main influences on the microclimate within urban area. Among the 23 Automated Weather Stations (AWS) installed within Seoul city by the Korea Meteorological Administration, 6 sites were selected for the analysis, based on their different urban and architectural characteristics, and actual measurements were conducted in August 2017 using individual AWS equipment. Also, the measurements of microclimate and urban and architectural elements within a 500m radius of the AWS measurement points were collected and analyzed. The result of the analysis shows that the microclimate elements, such as wind speed, solar radiation, and temperature, were affected by the direction of the streets, the width, depth, and height of the buildings, the topographic elevation and direction and the traffic volume. This study is expected to contribute to mitigating urban heat island effect and setting the foundation for sustainable cities through development of urban management methods and techniques including the relationship between built environment elements and microclimate.

The Holocene tidal sedimentary changes in Mosan Bay Estuary, Korea (홀로세 충남 모산만 하구역내 간석지의 퇴적과정)

  • Shin, Young Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.37-51
    • /
    • 2011
  • Geomorphic changes and sedimentary changes are investigated by sediment analysis from estuarine tidal flat, Mosan Bay Estuary, which is a tide-dominated and rias estuary. Sediments separatedly deposited during the early Holocene and the late Holocene. There are unconformities between the early Holocene sediment unit and the late Holocene sediment unit. Developments of these unconformities were related with fluctuated sea level change during the mid Holocene. Three deposit zones are spatially classified, which are named "intermittent tide channel deposit zone"(A1, B1, D3), "flood-dominated deposit zone"(A3, B3, C1, C3), and "fluvial sediment deposit zone"(A2, B2). This classification is explained by three main effects; laterally restricted migration of a tidal channel, diffract flood effect and settling lag effect, and fluvial induced reworking. These effects are deserved as main factors which have formed estuarine geomorphology in tidedominated and rias estuary. This study suggests research directions in reconstructing estuarine geomorphic and sedimentary change in west coast of Korea. Furthermore, it gives useful data for making a "land-ocean interaction" model for west coast of Korea.

Development of deep learning algorithm for classification of disc cutter wear condition based on real-time measurement data (실시간 측정데이터 기반의 디스크커터 마모상태 판별 딥러닝 알고리즘 개발)

  • Ji Yun Lee;Byung Chul Yeo;Ho Young Jeong;Jung Joo Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.281-301
    • /
    • 2024
  • The power cable tunnels which are part of the underground transmission line project, are constructed using the shield TBM method. The disc cutter among the shield TBM components plays an important role in breaking rock mass. Efficient tunnel construction is possible only when appropriate replacement occurs as the wear limit is reached or damage such as uneven wear occurs. A study was conducted to determine the wear conditions of disc cutter using a deep learning algorithm based on real-time measurement data of wear and rotation speed. Based on the results of full-scaled tunnelling tests, it was confirmed that measurement data was obtained differently depending on the wear conditions of disc cutter. Using real-time measurement data, an algorithm was developed to determine disc cutter wear characteristics based on a convolutional neural network model. Distributional patterns of data can be learned through CNN filters, and the performance of the model that can classify uniform wear and uneven wear through these pattern features.

Analysis of Environmental Design Data for Growing Pleurotus ervngii (큰 느타리버섯 재배사의 환경설계용 자료 분석)

  • Yoon, Yong-Cheol;Suh, Won-Myung;Lee, In-Bok
    • Journal of Bio-Environment Control
    • /
    • v.14 no.2
    • /
    • pp.95-105
    • /
    • 2005
  • This study was carried out to file up using effect and requirement of energy for environmental design data of Pleurotus eryngii growing houses. Heating and cooling Degree-Hour (D-H) were calculated and compared for. some Pleurotus eryngii growing houses of sandwich-panel (permanent) o. arch-roofed(simple) type structures modified and suggested through field survey and analysis. Also thermal resistance (R-value) was calculated for the heat insulating and covering materials of the permanent and simple-type, which were made of polyurethane or polystyrene panel and $7\~8$ layers heat conservation cover wall. The variations of heating and cooling D-H simulated for Jinju area was nearly linearly proportional to the setting inside temperatures. The variations of cooling D-H was much more sensitive than those of heating D-H. Therefore, it was expected that the variations of required energy in accordance with setting temperature or actual temperature maintained inside of the cultivation house could be estimated and also the estimated results of heating and cooling D-H could be effectively used far the verification of environmental simulation as well as for the calculation of required energy amounts. When the cultivation floor areas are all equal, panel type houses to be constructed by various combinations of materials were found to by far more effective than simple type pipe house in the aspect of energy conservation maintenance except some additional cost invested initially. And also the energy effectiveness of multi-span house compared to single span together with the prediction of energy requirement depending on the level insulated for the wall and roof area could be estimated. Additionally, structural as well as environmental optimizations are expected to be possible by calculating periodical and/or seasonal energy requirements for those various combinations of insulation level and different climate conditions, etc.