• Title/Summary/Keyword: 에너지 공간

Search Result 1,727, Processing Time 0.031 seconds

The Long-term Variations of Water Qualities in the Saemangeum Salt-Water Lake after the Sea-dike Construction (방조제 체절이후 새만금호의 장기적인 수질변화)

  • Jeong, Yong Hoon;Yang, Jae Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.51-63
    • /
    • 2015
  • In order to investigation long-term variations of water qualities in the Saemangeum Salt-Water Lake formed after the sea-dike construction, the survey has carried out over 40 time from 2002 to 2010. The decreased salinity in surface water immediately after the dike construction has maintained on equal terms for years. After the dike construction, the early concentration of SPM in surface water has decreased but then it showed the tendency to move up and down due to the changes of water level in the lake. The elevated concentration of Chl-a in surface water initially after the dike construction was kept at the same conditions for years. The concentration of DIN in surface water has not changed before and shortly after the dike construction. However, the concentration of $NH_4-N$ in surface water has increased steadily after the dike construction. Consequently the concentration of DIN in the lake water after years has raised compared to pre-dike construction. The reduced concentration of DIP in surface water soon after the dike construction has increased after years as well as $NH_4-N$ due to the accumulation of organic matter to inside lake. Unlike with the unvaried $NO_3-N$, the concentration of DISi in surface water after the dike construction has immediately increased and maintained the enhanced level indicating the supply from other sources except the freshwater. Since the dike construction, the spatial characteristics of water quality was divided river sides and rest of the lake markedly. Stratification of river sides was more strong than the dike sides. In the warm seasons, hypoxia causing the release of nutrients and metals from sediment was observed downward about 1 m from surface of river sides. We strongly suggest to make some urgent measure to prevent low dissolved oxygen condition in the bottom layer of the river sides.

Water Quality and Heavy Metals in the Surface Seawaters of the Saemangeum Area during the Saemangeum-dike Construction (새만금 방조제 체절 과정 중 새만금 주변해역 표층수의 수질과 중금속 분포 특성)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Kim, Seong-Soo;Park, Jong-Soo;Park, Jun-Kun;Cho, Sung-Rok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 2009
  • In order to investigate spatial and temporal distributional characteristics of major water qualities in the Saemangeum area during the Saemangeum dike construction, salinity, COD, dissolved nutrients(DIN, Silicate) and heavy metals were analyzed from the surface water collected in April, May, August and November 2002. The overall value of Salinity, COD, DIN, and silicate in surface waters were in the range of $13.08{\sim}31.96\;psu$, $0.12{\sim}3.43\;mg/L$, $0.001{\sim}2.638\;mg/L$, and $0.010{\sim}3.181\;mg/L$, respectively. The COD and DIN in each survey showed the highest concentration at the mouth of Mangyeong river estuary(St. 1) where freshwater flow into the Saemangeum area. The concentrations of nutrients were high in the inner part of the Saemangeum dike with low-salinity, and low nutrients in the outer part of the dike with high-salinity, which strongly indicated that concentrations were adjusted by physical mixing. The ranges of dissolved metals and acid-soluble Hg in surface seawater were $0.006{\sim}0.115{\mu}g/L$ for Co, $0.26{\sim}0.114{\mu}g/L$ for Ni, $0.14{\sim}0.93{\mu}g/L$ for Cu, $0.04{\sim}0.53{\mu}g/L$ for Zn, $0.010{\sim}0.043{\mu}g/L$ for Cd, $0.010{\sim}0.795{\mu}g/L$ for Pb, and $0.25{\sim}4.16{\mu}g/L$ for Hg. The highest concentrations of some metals except for Cd were found at the estuary(Sts. 1 or 3). In most cases, a decreasing order of metal concentrations towards open sea(low-salinity$\rightarrow$high-salinity) was observed and showed positive relationship with DIN and silicate caused by land base pollutants input. On the other hand, due to Cd desorption from suspended solids in saline water, dissolved Cd concentrations were high in high-salinity area and low in low-salinity. In November, Co, Zn, Cu and Pb were relatively high in the northern area of the outer-side of Saemangeum, which was only influenced by the Geum river discharge. The concentrations of most dissolved metals of this study were lower than those of the past data in this area, but higher than those in Lena river estuary under the pristine environment.

  • PDF

Spaciotemporal Distributions of PM10 Concentration and Their Correlation with Local Temperature Changes : a Case Study of Busan Metropolitan City (PM10 농도의 시공간적 분포 특징과 국지적 기온 변화 간의 상관관계: 부산광역시 사례 분석)

  • Park, Sunyurp
    • Journal of the Korean association of regional geographers
    • /
    • v.23 no.1
    • /
    • pp.151-167
    • /
    • 2017
  • The main objective of this study was to investigate the climatic impact of $PM_{10}$ concentration on the temperature change pattern in Busan Metropolitan City(BMC), Korea during 2001~2015. Mean $PM_{10}$ concentration of BMC has gradually declined over the past 15 years. While the highest $PM_{10}$ concentration was observed in spring followed by winter, summer, and fall on average, the seasonal variations of $PM_{10}$ concentration differed from place to place within the city. Frequency analysis showed that the most frequently observed $PM_{10}$ concentration ranged from $20{\mu}g/m^3$ to $60{\mu}g/m^3$, which accounted for 64.6% of all daily observations. Overall, the west-high and east-low pattern of $PM_{10}$ concentration was relatively strong during the winter when the effect of yellow-dust events on the air quality was weak. Comparative analyses between $PM_{10}$ concentration and monthly temperature slope derived from generalized temperature curves indicated that the decreasing trend of $PM_{10}$ concentration was associated with increases of annual temperature range, and $PM_{10}$ concentration had a negative relationship with the temperature slope of warming months. Overall, $PM_{10}$ concentration had a weak correlation with the annual mean temperature, but it had a significant, positive correlation with the winter season, which had a dominant influence on the annual mean temperature. In terms of energy budget, it has been known that the change in $PM_{10}$ concentration contributes to the warming or cooling effect by affecting the radiative forcing due to the reflection and absorption of radiant energy. The correlation between $PM_{10}$ concentration and temperature changes in the study area was not seasonally and spatially consistent, and its significance was statistically limited partly due to the number of observations and the lack of potential socioeconomic factors relevant to urban air quality.

  • PDF

The Construction and Application of Planning Support System for the Sustainable Urban Development (지속가능한 도시개발을 위한 계획지원시스템의 구축과 활용에 관한 연구)

  • Lee, Hee-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.1 s.118
    • /
    • pp.133-155
    • /
    • 2007
  • The sustainable urban development has emerged as a new paradigm of urban studies in recent years. A review of the literature of land use and transport policies in relation to sustainable development reveals a consensus that the main objectives of sustainable strategy should decrease the numbers and length of journeys, and change the land use pattern towards mixed use and high density. However, there is a lack of empirical research as to what types of policies might influence effectively the reduction in the energy consumption and emission of $CO_2$. in order to sustain urban development. This paper tries to construct the conceptual structure of the PSS(planning support system), which is designed to the simulation of the probable effects of policies and planning of different kinds in cities, and evaluate the sustainablilty level according to construct the structure of the PSS(planning support system), which is designed to the simulation of the probable effects of policies and planning of different kinds in cities, and evaluate the sustainablilty level according to the alternative scenarios. The PSS is composed of three components (input-modeling-output). The core of PSS is integrating land use-transport-environment modeling. The advantages of integrating land use-transport-environment modeling are well known, but there are very few such integrated modeling packages in practice. So this paper tries to apply TRANUS software, which is an integrated land use and transport model. The TRANUS system was calibrated to city of Yongin for the base year. The purpose of the application of TRANUS to Yongin is to examine the operability of TRANUS system in Korea. From the outputs and results of operating the system, TRANUS may be effectively used to evaluate the effects of alternative sustainable urban development policies, since sustainablilty indicators can be extracted from several aspects such as land use consumption, total trips, distance and cost, energy consumption, ratio of transport split.

Summer Environmental Evaluation of Water and Sediment Quality in the South Sea and East China Sea (남해 및 동중국해의 하계 수질 및 저질 환경평가)

  • Lee, Dae-In;Cho, Hyeon-Seo;Yoon, Yang-Ho;Choi, Young-Chan;Lee, Jeong-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.83-99
    • /
    • 2005
  • To evaluate environmental charateristics of the South Sea and East China Sea on summer, water and sediment quality were measured in June 2001-2003. Surface layer was affceted by Warm water originated from the high temperature and salinity-Tsushima Warm Current, on the other hand, Yellow Sea Cold Water was spread to the bottom layer in the south-western part of the Jeju island, and salinity at stations near the Yangtze River was decreased below 29psu because of a enormous freshwater discharges. Thermocline-depth was formed at about 10m, and chlorophyll maximum layer was existed in and below the thermocline. COD(Chemical Oxygen Demand), TN(Total Nitrogen), and TP(Total Phosphorus) concentrations showed seawater quality grade II in surface layer of the most area, but concentrations of such as COD, Chl. a, TSS(Total Suspended Solid), and nutrients were greatly increased in the effect area of Yangtze River discharges. Correlations between dissolved inorganic nitrogen, Chl. a and salinity were negative patterns strongly, in contrast, those of inorganic phosphorus, COD and Chl. a were positive, which indicates that phytoplankton biomass and phosphorus are considered as important factors of organic matter distribution and algal growth, respectively. in the study area. The distribution of ignition loss, COD, and $H_2S$ of surface sediment were in the ranges of 2.61-8.81%, $0.64-11.86mgO_2/g-dry$, and ND-0.25 mgS/g-dry, respectively, with relatively high concentration in the eastern part of the study area. Therefore, to effective and sustainable use and management of this area, continuous monitoring and countermeasures about major input sources to the water and sediment, and prediction according to the environmental variation, are necessary.

  • PDF

Estimation of Total Allowable Pollutant Loads Using Eco-hydrodynamic Modeling for Water Quality Management on the Southern Coast of Korea (생태계 모델에 의한 총허용 오염부하량 산정을 통한 연안해역의 수질관리)

  • Lee, Dae-In;Kim, Jong-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.1
    • /
    • pp.29-43
    • /
    • 2007
  • For effective management of water quality on the southern coast of korea, a three-dimensional eco-hydrodynamic model is used to predict water quality in summer and to estimate the reduction rate in pollutant loads that would be required to restore water quality. Under the current environmental conditions, in particular, pollutant loadings to the study area were very high, chemical oxygen demand (COD) exceeded seawater quality criteria to comply with current legislation, and water quality was in a eutrophic condition. Therefore, we estimated reduction rates of current pollutant loads by modeling. The model reproduced reasonably the flow field and water quality of the study area. If the terrestrial COD, inorganic nitrogen and phosphorus loads were reduced by 90%, the water quality criteria of Region A were still not satisfied. However, when the nutrient loads from polluted sediment and land were each reduced by 70% simultaneously, COD and $Chl-{\alpha}$ were restored. When we reduced the input COD and nutrient loads from the Nakdong River by 80%, $Chl-{\alpha}$ and COD of Region B decreased below $10\;{\mu}g\;1^{-1}$ and $2\;mg\;1^{-1}$, respectively. The water quality criteria of Region C were satisfied when we reduced the terrestrial COD and nutrient loads by 70%. Total allowable loadings of COD and inorganic nutrients in each region were determined by multiplying the reduction rates by current pollutant loads. Estimated high reduction rates, although difficult to achieve at the present time under the prevailing environmental conditions, suggest that water pollution is very severe in this study area, and pollutant loads must be reduced within total allowable loads by continuous and long-term management. To achieve the reduction in pollutant loads, sustainable countermeasures are necessary, including the expansion of sewage and wastewater facilities, polluted sediment control and limited land use.

  • PDF

Stand-alone Real-time Healthcare Monitoring Driven by Integration of Both Triboelectric and Electro-magnetic Effects (실시간 헬스케어 모니터링의 독립 구동을 위한 접촉대전 발전과 전자기 발전 원리의 융합)

  • Cho, Sumin;Joung, Yoonsu;Kim, Hyeonsu;Park, Minseok;Lee, Donghan;Kam, Dongik;Jang, Sunmin;Ra, Yoonsang;Cha, Kyoung Je;Kim, Hyung Woo;Seo, Kyoung Duck;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.86-92
    • /
    • 2022
  • Recently, the bio-healthcare market is enlarging worldwide due to various reasons such as the COVID-19 pandemic. Among them, biometric measurement and analysis technology are expected to bring about future technological innovation and socio-economic ripple effect. Existing systems require a large-capacity battery to drive signal processing, wireless transmission part, and an operating system in the process. However, due to the limitation of the battery capacity, it causes a spatio-temporal limitation on the use of the device. This limitation can act as a cause for the disconnection of data required for the user's health care monitoring, so it is one of the major obstacles of the health care device. In this study, we report the concept of a standalone healthcare monitoring module, which is based on both triboelectric effects and electromagnetic effects, by converting biomechanical energy into suitable electric energy. The proposed system can be operated independently without an external power source. In particular, the wireless foot pressure measurement monitoring system, which is rationally designed triboelectric sensor (TES), can recognize the user's walking habits through foot pressure measurement. By applying the triboelectric effects to the contact-separation behavior that occurs during walking, an effective foot pressure sensor was made, the performance of the sensor was verified through an electrical output signal according to the pressure, and its dynamic behavior is measured through a signal processing circuit using a capacitor. In addition, the biomechanical energy dissipated during walking is harvested as electrical energy by using the electromagnetic induction effect to be used as a power source for wireless transmission and signal processing. Therefore, the proposed system has a great potential to reduce the inconvenience of charging caused by limited battery capacity and to overcome the problem of data disconnection.

Application of Greenhouse Climate Management Model for Educational Simulation Design (교육용 시뮬레이션 설계를 위한 온실 환경 제어 모델의 활용)

  • Yoon, Seungri;Kim, Dongpil;Hwang, Inha;Kim, Jin Hyun;Shin, Minju;Bang, Ji Wong;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.485-496
    • /
    • 2022
  • Modern agriculture is being transformed into smart agriculture to maximize production efficiency along with changes in the 4th industrial revolution. However, rural areas in Korea are facing challenges of aging, low fertility, and population outflow, making it difficult to transition to smart agriculture. Among ICT technologies, simulation allows users to observe or experience the results of their choices through imitation or reproduction of reality. The combination of the three-dimension (3D) model and the greenhouse simulator enable a 3D experience by virtual greenhouse for fruits and vegetable cultivation. At the same time, it is possible to visualize the greenhouse under various cultivation or climate conditions. The objective of this study is to apply the greenhouse climate management model for simulation development that can visually see the state of the greenhouse environment under various micrometeorological properties. The numerical solution with the mathematical model provided a dynamic change in the greenhouse environment for a particular greenhouse design. Light intensity, crop transpiration, heating load, ventilation rate, the optimal amount of CO2 enrichment, and daily light integral were calculated with the simulation. The results of this study are being built so that users can be linked through a web page, and software will be designed to reflect the characteristics of cladding materials and greenhouses, cultivation types, and the condition of environmental control facilities for customized environmental control. In addition, environmental information obtained from external meteorological data, as well as recommended standards and set points for each growth stage based on experiments and research, will be provided as optimal environmental factors. This simulation can help growers, students, and researchers to understand the ICT technologies and the changes in the greenhouse microclimate according to the growing conditions.

A Consideration of Apron's Shielding in Nuclear Medicine Working Environment (PET검사 작업환경에 있어서 APRON의 방어에 대한 고찰)

  • Lee, Seong-wook;Kim, Seung-hyun;Ji, Bong-geun;Lee, Dong-wook;Kim, Jeong-soo;Kim, Gyeong-mok;Jang, Young-do;Bang, Chan-seok;Baek, Jong-hoon;Lee, In-soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.110-114
    • /
    • 2014
  • Purpose: The advancement in PET/CT test devices has decreased the test time and popularized the test, and PET/CT tests have continuously increased. However, this increases the exposure dose of radiation workers, too. This study aims to measure the radiation shielding rate of $^{18}F-FDG$ with a strong energy and the shielding effect when worker wore an apron during the PET/CT test. Also, this study compared the shielding rate with $^{99m}TC$ to minimize the exposure dose of radiation workers. Materials and Methods: This study targeted 10 patients who visited in this hospital for the PET/CT test for 8 days from May 2nd to 10th 2013, and the $^{18}F-FDG$ distribution room, patient relaxing room (stand by room after $^{18}F-FDG$ injection) and PET/CT test room were chosen as measuring spots. Then, the changes in the dose rate were measured before and after the application of the APRON. For an accurate measurement, the distance from patients or sources was fixed at 1M. Also, the same method applied to $^{99m}TC's$ Source in order to compare the reduction in the dose by the Apron. Results: 1) When there was only L-block in the $^{18}F-FDG$ distribution room, the average dose rate was $0.32{\mu}Sv$, and in the case of L-blockK+ apron, it was $0.23{\mu}Sv$. The differences in the dose and dose rate between the two cases were respectively, $0.09{\mu}Sv$ and 26%. 2) When there was no apron in the relaxing room, the average dose rate was $33.1{\mu}Sv$, and when there was an apron, it was $22.3{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $10.8{\mu}Sv$ and 33%. 3) When there was no APRON in the PET/CT room, the average dose rate was $6.9{\mu}Sv$, and there was an APRON, it was $5.5{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $1.4{\mu}Sv$ and 25%. 4) When there was no apron, the average dose rate of $^{99m}TC$ was $23.7{\mu}Sv$, and when there was an apron, it was $5.5{\mu}Sv$. The differences in the dose and dose rate between them were respectively, $18.2{\mu}Sv$ and 77%. Conclusion: According to the result of the experiment, $^{99m}TC$ injected into patients showed an average shielding rate of 77%, and $^{18F}FDG$ showed a relatively low shielding rate of 27%. When comparing the sources only, $^{18F}FDG$ showed a shielding rate of 17%, and $^{99m}TC$'s was 77%. Though it had a lower shielding effect than $^{99m}TC$, $^{18}F-FDG$ also had a shielding effect on the apron. Therefore, it is considered that wearing an apron appropriate for high energy like $^{18}F-FDG$ would minimize the exposure dose of radiation workers.

  • PDF

The Study of Land Surface Change Detection Using Long-Term SPOT/VEGETATION (장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.111-124
    • /
    • 2010
  • To monitor the environment of land surface change is considered as an important research field since those parameters are related with land use, climate change, meteorological study, agriculture modulation, surface energy balance, and surface environment system. For the change detection, many different methods have been presented for distributing more detailed information with various tools from ground based measurement to satellite multi-spectral sensor. Recently, using high resolution satellite data is considered the most efficient way to monitor extensive land environmental system especially for higher spatial and temporal resolution. In this study, we use two different spatial resolution satellites; the one is SPOT/VEGETATION with 1 km spatial resolution to detect coarse resolution of the area change and determine objective threshold. The other is Landsat satellite having high resolution to figure out detailed land environmental change. According to their spatial resolution, they show different observation characteristics such as repeat cycle, and the global coverage. By correlating two kinds of satellites, we can detect land surface change from mid resolution to high resolution. The K-mean clustering algorithm is applied to detect changed area with two different temporal images. When using solar spectral band, there are complicate surface reflectance scattering characteristics which make surface change detection difficult. That effect would be leading serious problems when interpreting surface characteristics. For example, in spite of constant their own surface reflectance value, it could be changed according to solar, and sensor relative observation location. To reduce those affects, in this study, long-term Normalized Difference Vegetation Index (NDVI) with solar spectral channels performed for atmospheric and bi-directional correction from SPOT/VEGETATION data are utilized to offer objective threshold value for detecting land surface change, since that NDVI has less sensitivity for solar geometry than solar channel. The surface change detection based on long-term NDVI shows improved results than when only using Landsat.