• Title/Summary/Keyword: 에너지보조금

Search Result 46, Processing Time 0.03 seconds

Policy Decision and its Impact on German Nuclear Phase-Out (독일의 탈원전 정책결정과 영향)

  • Yun, Sung Won;Ryu, Jae Soo;Kim, Yeun Jong
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2017.11a
    • /
    • pp.1473-1487
    • /
    • 2017
  • 2017년 6월 19일 고리 원전 1호기 영구정지 기념식에서 문재인 대통령의 '탈원전' 선언을 계기로, 국내에서는 후쿠시마 원전 사고 이후 탈원전으로 복귀한 독일의 사례에 대한 관심이 고조되었다. 독일은 1986년 체르노빌 원전 사고 이후 탈원전에 대한 논의가 본격적으로 이루지면서 집권 정부의 성향과 사회 경제적 요인에 따라 "2000년 탈원전 선언 ${\rightarrow}$ 2010년 탈원전 보류 ${\rightarrow}$ 2011년 탈원전 복귀"의 결정 과정을 거쳤다. 이러한 정책 변화의 배경에는 간헐성의 재생에너지를 뒷받침(back-up)할 수 있는 자국의 풍부한 갈탄 매장량, 지리적으로 주변국과 연결된 전력망을 통해 전력을 상시 주고받을 수 있는 전력 수급 환경, 탈원전에 대한 정부 국민 산업계의 40여년에 걸친 합의형성 등 '독일 자국의 실정을 반영한 정책적 판단'이 자리하고 있다. 그럼에도 불구하고, 2011년 후쿠시마 원전 사고 직후 독일의 즉각적인 탈원전 복귀는 화석연료 사용의 증가로 인한 온실가스 배출량 증가, 재생에너지 보조금 증가 및 송전망 확대로 인한 전기요금 상승, 간헐성의 재생에너지로 인한 불안정한 전력 수급, 과잉 생산된 전력의 수출로 인한 주변국 전력계통 혼란 등의 문제를 초래하고 있다. 이에 본고에서는 독일의 탈원전 정책이 '어떤 정책결정 과정을 거쳤으며, 현실적으로 어떤 문제에 직면해 있는지'를 살펴보고 우리나라의 에너지 수급 현실을 반영한 정책적 시사점을 도출하고자 한다.

  • PDF

An Economic Analysis of the Hydrogen Station Enterprise Considering Dynamic Utilization (동적 이용률을 고려한 수소충전소 사업의 경제성 분석)

  • GIM, BONGJIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.47-55
    • /
    • 2017
  • This paper deals with the after-tax economic feasibility analysis of the hydrogen fueling station considering dynamic utilization. We selected an off-site hydrogen station in which the hydrogen is supplied by a central by-product hydrogen plant as a case study. Also, we made some sensitivity analysis by changing input factors such as the discount rate, the hydrogen station construction cost, the hydrogen demand and the hydrogen sale price. As a result, the hydrogen station will not be economical in 2020 due to the relatively high price of the hydrogen station construction cost and the low price of hydrogen sale price. In order to realize the economic feasibility of the hydrogen station in the early stage of the hydrogen economy, the subsidies on the annual operating cost as well as the construction cost are needed.

한국 석탄자원의 희소성 측정

  • Lee, Myeong-Heon
    • Environmental and Resource Economics Review
    • /
    • v.4 no.1
    • /
    • pp.91-102
    • /
    • 1994
  • 우리나라에서 다른 광물자원보다 매장량이 비교적 풍부하고 에너지원으로서 총에너지소비량에서 중요한 몫을 차지해 온 석탄의 희소성을 측정하기 위하여 시장가격을 사용할 경우 그 결과는 실질고갈상태를 왜곡시킬 수 있다. 왜냐하면 정부가 석탄가격을 관리하며 생산원가보다 낮은 부분에 대해서는 보조금이나 장려금을 지급해 왔기 때문이다. 그러므로 본 연구는 쌍대성이론(duality theory)을 토대로 한 할버슨-스미스(Halvorsen-Smith, 1984) 모형을 이용하여 매장되어 있는 광물자원의 암묵가격(shadow price)을 실증적으로 추정함으로써 우리나라 석탄자원의 희소성을 측정하였다. 최종생산물의 가격으로 측정된 희소성지표에 의하면 우리나라의 석탄자원은 매우 완만하게 고갈되어 가고 있는 반면에 광석의 암묵가격으로 본 회소성지표에 의하면 그보다 더 빠른 속도로 고갈되어 가고 있음을 알 수 있었다.

  • PDF

Development of Self-Consumption Smart Home System (에너지 자립형 스마트 홈 시스템 개발)

  • Lee, Sanghak
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.42-47
    • /
    • 2016
  • Due to advances such as photovoltaic power generation and energy storage system, energy self-consumption smart home system in which energy management system is built and energy is generated in house has been actively researched. In particular, due to the instability of the grid after the Fukushima nuclear accident, home system in which generating electricity from photovoltaic, storing and using it in energy storage system was commercialized in Japan. While subsidizing renewable energy projects through a combination of solar and energy storage systems in North America and Europe has expanded home installation. In this paper, we describe development of self-consumption smart home system which is connecting photovoltaic system and energy storage system in home area network and operating it based on real-time price. We implemented automated self-consumption home in which optimizing the use of energy from the power grid with minimal user's intervention.

Thermoeconomic Analysis of Hybrid Desiccant Cooling System Driven by District Heating (지역난방에 연계된 하이브리드 제습냉방시스템의 경제성 분석)

  • Ahn, Joon;Kim, Jaeyool;Kang, Byung Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.721-729
    • /
    • 2014
  • A hybrid desiccant cooling system (HDCS) that uses a heat pump driven by district heating instead of a sensible rotor can provide an increased energy efficiency in summer. In this paper, the summer operation costs and initial costs of both the HDCS and traditional systems are analyzed using annual equal payments, and national benefits are found from using the HDCS instead of traditional systems. In the analysis results, the HDCS reduces the operation cost by 30 compared to the traditional systems, and each HDCS unit has 0.079 TOE per year of primary energy savings and 0.835 $TCO_2$ per year of $CO_2$ emission reduction more than the traditional systems. If HDCSs were to be installed in 680,000 households by 2020, this would produce a replacement power effect of 463 MW. Despite this savings effect, HDCSs require a government subsidy before they can be supplied because the initial cost is higher than that of traditional systems. Thus, this paper calculates suitable subsidies and suggests a supply method for HDCSs considering the national benefits.

Analysis of Electric Vehicle's Environmental Benefits from the Perspective of Energy Transition in Korea (에너지 전환정책에 따른 전기자동차의 환경편익 추정연구)

  • Jeon, Hocheol
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.307-326
    • /
    • 2019
  • The electric vehicle is a representative measure to reduce greenhouse gas and local air pollutants in the transportation sector. Most countries provide purchase subsidies and tax reductions to promote electric vehicle sales. The electric vehicles have been considered as zero-emission vehicles(ZEV) in light of the fact that there has been no pollutant emission during driving. However, recent studies have pointed out that the pollutant emitted from the process of generating electricity used for charging the electric vehicles need to be treated as emissions of the electric vehicles. Furthermore, the environmental benefits of electric vehicle replacing the internal combustion vehicle vary with the power mix. In line with the recent studies, this study analyzes the impact of electric vehicles based on the current power mix and future energy transition scenarios in Korea. To estimate the precise air pollutants emission profile, this study uses hourly electricity generation and TMS emission data for each power plant from 2015 to 2016. The estimation results show that the electric vehicles under the current power mix generate the environmental benefits of only -0.41~10.83 won/km. Also, we find that the environmental benefit of electric vehicle will significantly increase only when the ratio of the coal-fired power plant is reduced to a considerable extent.

The Impact of Renewable Energy Generation on the Level and Volatility of Electricity Price: The Case of Korea (재생에너지 발전 확대에 따른 전력계통한계가격의 변화)

  • Lee, Seojin;Yu, Jongmin
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.141-163
    • /
    • 2022
  • This paper empirically analyzes the effect of renewable electricity generation on the System Marginal Price (SMP) in Korea. Using an ARX-GARCHX model with hourly data from 2016 to 2020, we evaluate SMP determinants and merit order effects. As a result, we find that solar and wind power, as well as gas price and total load, play a critical role in the SMP. In particular, solar power reduces the SMP level but raises volatility during peak and off-peak periods. This result implies that SMP may fall as renewable electricity generation increases, leading to a decrease in the profitability of existing power plants and investment in renewables. On the other hand, even if the subsidy of renewable energy increases the burden on the SMP, it can be offset by the merit order effect, which lowers the SMP.

Economic analysis of Frequency Regulation Battery Energy Storage System for Czech combined heat & power plant (체코 열병합발전소 주파수조정용 배터리에너지저장장치 경제성 분석)

  • KIM, YuTack;Cha, DongMin;Jung, SooAn;Son, SangHak
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.68-78
    • /
    • 2020
  • According to the new climate change agreement, technology development to reduce greenhouse gases is actively conducted worldwide, and research on energy efficiency improvement in the field of power generation and transmission and distribution is underway [1,2]. Economic analysis of the operation method of storing and supplying surplus electricity using energy storage devices, and using energy storage devices as a frequency adjustment reserve power in regional cogeneration plants has been reported as the most profitable operation method [3-7]. Therefore, this study conducted an economic analysis for the installation of energy storage devices in the combined heat and power plant in the Czech Republic. The most important factor in evaluating the economics of battery energy storage devices is the lifespan, and the warranty life is generally 10 to 15 years, based on charging and discharging once a day. For the simulation, the ratio of battery and PCS was designed as 1: 1 and 1: 2. In general, the primary frequency control is designed as 1: 4, but considering the characteristics of the cogeneration plant, it is set at a ratio of up to 1: 2, and the capacity is simulated at 1MW to 10MW and 2MWh to 20MWh according to each ratio. Therefore, life was evaluated based on the number of cycles per year. In the case of installing a battery energy storage system in a combined heat and power plant in the Czech Republic, the payback period of 3MW / 3MWh is more favorable than 5MW / 5MWh, considering the local infrastructure and power market. It is estimated to be about 3 years or 5 years from the simple payback period considering the estimated purchase price without subsidies. If you lower the purchase price by 50%, the purchase cost is an important part of the cost for the entire lifetime, so the payback period is about half as short. It can be, but it is impossible to secure profitability through the economy at the scale of 3MWh and 5MWh. If the price of the electricity market falls by 50%, the payback period will be three years longer in P1 mode and two years longer in P2 and P3 modes.

Economic Analysis on a PV System in an Apartment Complex (공동주택 태양광발전 시스템의 경제성 평가)

  • Kim, Jin-Hyung
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.163-177
    • /
    • 2010
  • This study analyzes the economies of photovoltaic systems in an apartment complex of 1,185 households, in cases of feed-in tariff and subsidy for solar home program of the government. When including the revenue only from electricity sales, NPVs of subsidy and that of feed-in tariff are -560 million KRW and -87 million KRW respectively. With the avoided social cost included without the revenues from CERs, NPVs of subsidy and feed-in tariff are -556 million KRW and -84 million KRW respectively. With the revenues from CERs, NPV of subsidy is -526 million KRW and NPV of feed-in tariff is -54 million KRW. As results of sensitivity analysis based on the changes in capital costs and discount rates, while all scenarios with subsidy including the revenues from CERs are not commercially viable, all scenarios with feed-in tariff exclusive of the revenues from CERs are commercially viable when discount rate is less than 7.2% or capital cost is less than 6,840 thousand KRW/kW. In the cases that include the avoided social cost, while all scenarios with subsidy including the avoided social cost as well as the revenues from CERs are not commercially viable, all scenarios with feed-in tariff are commercially viable without the revenues from CERs when discount rate is less than 7.2% or capital cost is less than 6,856 thousand KRW/KW. The results indicate that the changes in discount rates do not influence the revenues from CERs, but the revenues from electricity sale. Considering that the number of apartment complex and the positive environmental and social benefits from PV system, government needs to promote its diffusion.

Renewable Energy Potentials and Promotion Policies in Indonesia (인도네시아 신재생 에너지 잠재력 및 보급 정책)

  • Yurnaidi, Zulfikar;Kim, Suduk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.137.1-137.1
    • /
    • 2010
  • For Indonesia, sustainable energy supply is an important factor to preserve the stable economic growth. One important strategy is development of renewable energy, which has not been fully exploited yet. The paper examines the potency of renewable energy in Indonesia. Currently, biomass composes 23% of total primary energy supply, while geothermal and hydropower has a combined share of 3%. But according to the overall potency of renewable energy, hydropower is found to have the highest available resource of 76 GW, followed by biomass and geothermal by 49.81 GW and 28.53 GW, respectively. Although the solar radiation is only at modest level ($4.80kWh/m^2/day$), the tropical all year sunlight can boost the competitiveness of solar photovoltaic and thermal application. As for wind energy, the average speed of 3-6 m/s requires the development of low speed wind turbine. The examination of electricity and petroleum product prices through international comparison for non-OECD countries shows fifth lowest price level for both of petroleum products and electricity for industrial use. As for household electricity price, Indonesia is placed the second among all the countries compared. The energy subsidy and price structure are examined in detail because it could be a source of hindrance to renewable energy promotion. The examination of renewable energy potency in this study could provide insights about recent development of renewable energy in Indonesia. As an outcome of policy examination, the price comparison analysis suggests Indonesia to reduce or even remove the energy subsidies in the long run. These findings can be utilized to formulate effective policies for renewable energy promotion.

  • PDF