• Title/Summary/Keyword: 얼굴요소검출

Search Result 94, Processing Time 0.027 seconds

Eyebrow Detection Algorithm Using the Histogram Analysis (히스토그램 분석을 이용한 눈썹 검출 알고리즘)

  • 이강호
    • Journal of the Korea Society of Computer and Information
    • /
    • v.7 no.4
    • /
    • pp.46-51
    • /
    • 2002
  • In this paper, I proposed a eyebrow detection algorithm in human face, that is important element in facial recognition. The proposed algorithm consists of four processes: face region detection using color region segmentation. eye detection by template matching, eyebrow candidate region detection in detected eye region, and eyebrow detection by thresholding using the modified histogram that gets luminance value in the candidate region. The test results show that the proposed algorithm can detect eyebrow region very effectively in facial image.

  • PDF

Detection Method of Human Face, Facial Components and Rotation Angle Using Color Value and Partial Template (컬러정보와 부분 템플릿을 이용한 얼굴영역, 요소 및 회전각 검출)

  • Lee, Mi-Ae;Park, Ki-Soo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.465-472
    • /
    • 2003
  • For an effective pre-treatment process of a face input image, it is necessary to detect each of face components, calculate the face area, and estimate the rotary angle of the face. A proposed method of this study can estimate an robust result under such renditions as some different levels of illumination, variable fate sizes, fate rotation angels, and background color similar to skin color of the face. The first step of the proposed method detects the estimated face area that can be calculated by both adapted skin color Information of the band-wide HSV color coordinate converted from RGB coordinate, and skin color Information using histogram. Using the results of the former processes, we can detect a lip area within an estimated face area. After estimating a rotary angle slope of the lip area along the X axis, the method determines the face shape based on face information. After detecting eyes in face area by matching a partial template which is made with both eyes, we can estimate Y axis rotary angle by calculating the eye´s locations in three dimensional space in the reference of the face area. As a result of the experiment on various face images, the effectuality of proposed algorithm was verified.

Efficient Facial Blemishes Removal with Face Feature Detection (얼굴 구성요소 검출을 통한 효율적인 얼굴 잡티 제거)

  • Park, Ho-Jun;Cha, Eui-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.55-58
    • /
    • 2016
  • 본 논문은 사람의 얼굴 영상에서 잡티를 제거하는 방법을 제안한다. 먼저 입력받은 영상에서 Haar-like Feature 기반 Adaboost 알고리즘과 색상 정보를 이용하여 얼굴 영역을 검출한다. 검출된 얼굴 영역에서 잡티를 제거하기 위해서는 먼저 눈, 코, 입, 눈썹과 같은 얼굴의 주요부위를 검출하고 이 영역을 제외한 순수 피부 영역에 잡티 검출 알고리즘을 적용해야한다. 사람의 얼굴은 미세하게 명암도 차이가 나는 부분이 많기 때문에 가우시안 스무딩을 적용한 후, 그래프 기반 분할 방법을 사용하여 눈, 입, 눈썹을 분할한다. 코 영역은 각 픽셀에 대해 인접픽셀과의 R 채널의 차이값을 가중치 맵으로 만들고 가중치 맵을 분석하여 영역을 분할한다. 분할된 영역에 사람 얼굴의 기하학적 위치 정보를 이용하여 주요부위를 검출한다. 얼굴의 주요부위를 검출하고 그 부위를 제외한 피부 영역에 잡티 검출 알고리즘을 적용한다. 잡티는 Edge와 색상 정보를 이용하여 검출하고, 잡티주변을 검사하여 잡티가 아닌 깨끗한 피부를 잡티 영역에 복사하여 채워나가는 방식으로 피부 영역을 복원한다.

  • PDF

Rotated Face Detection Using Polar Coordinate Transform and AdaBoost (극좌표계 변환과 AdaBoost를 이용한 회전 얼굴 검출)

  • Jang, Kyung-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.7
    • /
    • pp.896-902
    • /
    • 2021
  • Rotated face detection is required in many applications but still remains as a challenging task, due to the large variations of face appearances. In this paper, a polar coordinate transform that is not affected by rotation is proposed. In addition, a method for effectively detecting rotated faces using the transformed image has been proposed. The proposed polar coordinate transform maintains spatial information between facial components such as eyes, mouth, etc., since the positions of facial components are always maintained regardless of rotation angle, thereby eliminating rotation effects. Polar coordinate transformed images are trained using AdaBoost, which is used for frontal face detection, and rotated faces are detected. We validate the detected faces using LBP that trained the non-face images. Experiments on 3600 face images obtained by rotating images in the BioID database show a rotating face detection rate of 96.17%. Furthermore, we accurately detected rotated faces in images with a background containing multiple rotated faces.

Face Detection and Facial Feature Extraction for Person Identification (신원확인을 위한 얼굴 영역 탐지 및 얼굴 구성 요소 추출)

  • 이선화;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.517-519
    • /
    • 2001
  • 본 논문에서는 신원 확인 시스템을 위한 얼굴 영역 탐지 및 얼굴 구성 요소들을 추출하는 방법을 제안한다. 이 방법은 신원 확인을 위해 사용자가 시스템을 조작할 때, 움직임이 발생한다는 점과 눈 영역이 주위 영역에 비하여 뚜렷하게 어두운 화소들로 구성되어 있다는 점에 착안하였다. CCD 카메라로부터 입력되는 동영상에서 차영상 기법을 이용하여 얼굴 영역을 탐지하고, 탐지된 얼굴 영역 내에서 가장 안정적인 검출 결과를 보이는 눈 영역을 추출한다. 그리고 추출된 두 눈의 위치를 이용하여 전체 얼굴의 기울기를 보정한 수, 제안하는 가변 Ratio Template을 이용하여 검출된 얼굴영역을 검증하며 코, 입과 같은 다른 얼굴 구성 요소들을 추출한다. 이 방법은 명암의 변화에 따라 유동적인 결과를 산출해내는 이진화 과정을 거치지 않으므로 국부적인 조명이 밝기 변화나 얼굴의 기울기 변화와 같은 얼굴 인식의 제약점에 강인한 특징을 가진다.

  • PDF

Face Detection for Intelligent Video Conference System (지능형 영상회의를 위한 얼굴검출)

  • Park, Jae-Hyeon;Park, Gyu-Sik;On, Seung-Yeop;Kim, Cheon-Guk
    • The KIPS Transactions:PartB
    • /
    • v.8B no.1
    • /
    • pp.20-27
    • /
    • 2001
  • 얼굴검출은 현재 많은 연구가 활발히 진행되고 있는 분야로 보안, 인식 등 다양한 응용분야를 갖는다. 본 논문은 카메라가 화자의 이동에 따라 이를 추적하여 회전하고 회의상황에 맞는 앵글을 유지하는 지능형 영상회의 시스템 개발의 기본요소인 화자검출의 선행단계로 얼굴검출에 대한 새로운 방법을 제안한다. RGB 색 공간의 입력영상을 YIQ 공간으로 변환한 후 IQ 성분은 피부영역검출에 Y 성분은 얼굴의 특성을 추출하는데 사용된다. 색 분포도를 이용하여 피부영역을 검출하고, 마스크를 누적 적용하여 잡음을 제거한 후 얼굴의 구조적인 특성과 명암의 분포를 이용하여 얼굴영역이 검출된다. 실험결과 다양한 배경의 영상에서 여러 명의 얼굴이 오류 없이 검출됨이 관찰되었다.

  • PDF

SVM Based Facial Expression Recognition for Expression Control of an Avatar in Real Time (실시간 아바타 표정 제어를 위한 SVM 기반 실시간 얼굴표정 인식)

  • Shin, Ki-Han;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1057-1062
    • /
    • 2007
  • 얼굴표정 인식은 심리학 연구, 얼굴 애니메이션 합성, 로봇공학, HCI(Human Computer Interaction) 등 다양한 분야에서 중요성이 증가하고 있다. 얼굴표정은 사람의 감정 표현, 관심의 정도와 같은 사회적 상호작용에 있어서 중요한 정보를 제공한다. 얼굴표정 인식은 크게 정지영상을 이용한 방법과 동영상을 이용한 방법으로 나눌 수 있다. 정지영상을 이용할 경우에는 처리량이 적어 속도가 빠르다는 장점이 있지만 얼굴의 변화가 클 경우 매칭, 정합에 의한 인식이 어렵다는 단점이 있다. 동영상을 이용한 얼굴표정 인식 방법은 신경망, Optical Flow, HMM(Hidden Markov Models) 등의 방법을 이용하여 사용자의 표정 변화를 연속적으로 처리할 수 있어 실시간으로 컴퓨터와의 상호작용에 유용하다. 그러나 정지영상에 비해 처리량이 많고 학습이나 데이터베이스 구축을 위한 많은 데이터가 필요하다는 단점이 있다. 본 논문에서 제안하는 실시간 얼굴표정 인식 시스템은 얼굴영역 검출, 얼굴 특징 검출, 얼굴표정 분류, 아바타 제어의 네 가지 과정으로 구성된다. 웹캠을 통하여 입력된 얼굴영상에 대하여 정확한 얼굴영역을 검출하기 위하여 히스토그램 평활화와 참조 화이트(Reference White) 기법을 적용, HT 컬러모델과 PCA(Principle Component Analysis) 변환을 이용하여 얼굴영역을 검출한다. 검출된 얼굴영역에서 얼굴의 기하학적 정보를 이용하여 얼굴의 특징요소의 후보영역을 결정하고 각 특징점들에 대한 템플릿 매칭과 에지를 검출하여 얼굴표정 인식에 필요한 특징을 추출한다. 각각의 검출된 특징점들에 대하여 Optical Flow알고리즘을 적용한 움직임 정보로부터 특징 벡터를 획득한다. 이렇게 획득한 특징 벡터를 SVM(Support Vector Machine)을 이용하여 얼굴표정을 분류하였으며 추출된 얼굴의 특징에 의하여 인식된 얼굴표정을 아바타로 표현하였다.

  • PDF

Realtime Face Tracking using Motion Analysis and Color Information (움직임분석 및 색상정보를 이용한 실시간 얼굴추적)

  • Lee, Kyu-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.977-984
    • /
    • 2007
  • A realtime face tracking algorithm using motion analysis from image sequences and color information is proposed. Motion area from the realtime moving images is detected by calculating temporal derivatives first, candidate pixels which represent face region is extracted by the fusion filtering with multiple color models, and realtime face tracking is performed by discriminating face components which includes eyes and lips. We improve the stability of face tracking performance by using template matching with face region in an image sequence and the reference template of face components.

Face Detection Using Facial Features and Brightness on Long Distance (얼굴 요소의 특징과 명암차를 이용한 원거리 얼굴 검출)

  • Han, Sang-Il;Park, Sung-Jin;Cha, Hyung-Tai
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.359-362
    • /
    • 2005
  • 본 논문에서는 원거리에서 촬영한 영상을 가지고 얼굴 인식의 전처리 과정인 얼굴 영역 검출에 관한 알고리즘을 제안하였다. 원거리에서 촬영된 영상은 얼굴에 대한 특징 정보가 부족하여 검출 및 판별이 어려웠으나 본 논문에서 제안한 알고리즘을 적용하면 적은 정보만을 가지고 얼굴 검출 및 판별이 가능하다. 제안된 알고리즘은 피부색에 대한 색상 정보와 명암 정보를 이용하여 얼굴 영역을 추출하였고, 추출된 얼굴 영역으로부터 눈, 코, 입뿐만 아니라 이마 영역도 검출함으로써 얼굴 검출 효율을 개선하였다.

  • PDF

Face Detection Using Region Segmentation on Complex Image (복잡한 영상에서의 영역 분할을 이용한 얼굴 검출)

  • Park Sun-Young;Kang Byoung-Doo;Kim Jong-Ho;Kwon O-Hwa;Seong Chi-Young;Kim Sang-Kyoon;Lee Jae-Won
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.160-171
    • /
    • 2006
  • In this paper, we propose a face detection method using region segmentation to deal with complex images that have various environmental changes such as mixed background and light changes. To reduce the detection error rate due to background elements of the images, we segment the images with the JSEG method. We choose candidate regions of face based on the ratio of skin pixels from the segmented regions. From the candidate regions we detect face regions by using location and color information of eyes and eyebrows. In the experiment, the proposed method works well with the images that have several faces and different face size as well as mixed background and light changes.

  • PDF