Abstract
For an effective pre-treatment process of a face input image, it is necessary to detect each of face components, calculate the face area, and estimate the rotary angle of the face. A proposed method of this study can estimate an robust result under such renditions as some different levels of illumination, variable fate sizes, fate rotation angels, and background color similar to skin color of the face. The first step of the proposed method detects the estimated face area that can be calculated by both adapted skin color Information of the band-wide HSV color coordinate converted from RGB coordinate, and skin color Information using histogram. Using the results of the former processes, we can detect a lip area within an estimated face area. After estimating a rotary angle slope of the lip area along the X axis, the method determines the face shape based on face information. After detecting eyes in face area by matching a partial template which is made with both eyes, we can estimate Y axis rotary angle by calculating the eye´s locations in three dimensional space in the reference of the face area. As a result of the experiment on various face images, the effectuality of proposed algorithm was verified.
얼굴영상을 효율적으로 처리하기 위해선 먼저 인력영상에서 얼굴영역과 얼굴을 구성하는 각 요소를 검출하고 얼굴의 회전각을 추정하는 전처리과정이 필요하다. 본 논문에서는 다양한 얼굴의 크기와 머리회전, 조명의 변화가 허용되고 피부색과 비슷한 배경이 얼굴에 병합되는 경우에도 얼굴과 요소들(눈, 입)을 강건하게 검출할 수 있는 방법을 제안한다. 변환된 HSV 컬러 좌표계상의 대역적 피부 색상정보와 히스토그램을 이용한 피부 색상정보로 얼굴후보영역을 지정한 뒤, 같은 방법으로 얼굴후보영역 안에서 입술영역을 검출한다. 입술영역의 횡축 기울기로 x축에 대한 회전각을 추정한 후, 얼굴의 모양정보와 요소의 위치정보를 이용해 얼굴임을 확정한다. 다음으로 양안의 조합으로 이루어진 부분 템플릿매칭을 통해 눈을 검출한 뒤, 얼굴의 넓이를 참조한 3차원 공간상에서의 눈의 위치를 계산하여 y축 회전각을 추정한다. 다양한 얼굴영상에 대해 실험을 실시한 결과, 본 알고리즘의 유효성을 확인하였다.