• Title/Summary/Keyword: 얼굴영상

Search Result 1,528, Processing Time 0.031 seconds

Face Image Retrieval by Using Eigenface Projection Distance (고유영상 투영거리를 이용한 얼굴영상 검색)

  • Lim, Kil-Taek
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.5
    • /
    • pp.43-51
    • /
    • 2009
  • In this paper, we propose an efficient method of face retrieval by using PCA(principal component analysis) based features. The coarse-to-fine strategy is adopted to sort the retrieval results in the lower dimensional eigenface space and to rearrange candidates at high ranks in higher dimensional eigenface space. To evaluate similarity between a query face image and class reference image, we utilize the PD (projection distance), MQDF(modified quadratic distance function) and MED(minimum Euclidean distance). The experimental results show that the proposed method which rearrange the retrieval results incrementally by using projection distance is efficient for face image retrieval.

Recognizing Human Facial Expressions and Gesture from Image Sequence (연속 영상에서의 얼굴표정 및 제스처 인식)

  • 한영환;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.419-425
    • /
    • 1999
  • In this paper, we present an algorithm of real time facial expression and gesture recognition for image sequence on the gray level. A mixture algorithm of a template matching and knowledge based geometrical consideration of a face were adapted to locate the face area in input image. And optical flow method applied on the area to recognize facial expressions. Also, we suggest hand area detection algorithm form a background image by analyzing entropy in an image. With modified hand area detection algorithm, it was possible to recognize hand gestures from it. As a results, the experiments showed that the suggested algorithm was good at recognizing one's facial expression and hand gesture by detecting a dominant motion area on images without getting any limits from the background image.

  • PDF

ART2 기반 RBF 네트워크와 얼굴 인증을 이용한 주민등록증 인식

  • ;Lee, Jae-Eon;Kim, Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.526-535
    • /
    • 2005
  • 우리나라의 주민등록증은 주소지, 주민등록 변호, 얼굴사진, 지문 등 개개인의 방대한 정보를 가진다. 현재의 플라스틱 주민등록증은 위조 및 변조가 쉽고 날로 전문화 되어가고 있다. 따라서 육안으로 위조 및 변조 사실을 쉽게 확인하기가 어려워 사회적으로 많은 문제를 일으키고 있다. 이에 본 논문에서는 주민등록증 영상을 자동 인식할 수 있는 개선된 ART2 기반 RBF 네트워크와 얼굴인증을 이용한 주민등록증 자동 인식 방법을 제안한다. 제안된 방법은 주민등록증 영상에서 주민등록번호와 발행일을 추출하기 위하여 영상을 소벨마스크와 미디언 필터링을 적용한 후에 수평 스미어링을 적용하여 주민등록번호와 발행일 영역을 검출한다. 그리고 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출하기 위한 전 단계로 주민등록증 영상에 대해 고주파 필터링을 적용하여 주민등록증 영상 전체를 이진화 한다. 이진화된 주민등록영상에서 COM 마스크를 적용하여 주민등록번호와 발행일 코드를 복원하고 검출된 각 영역에 대해 4 방향 윤곽선 추적 알고리즘으로 개별 문자를 추출한다. 추출된 개별 문자는 개선된 ART2 기반 RBF 네트워크를 제안하여 인식에 적용한다. 제안된 ART2 기반 RBF 네트워크는 학습 성능을 개선하기 위하여 중간충과 출력층의 학습에 퍼지 제어 기법을 적용하여 학습률을 동적으로 조정한다. 얼굴인증은 템플릿 매칭 알고리즘을 이용하여 얼굴 템플릿 데이터베이스를 구축하고 주민등록증애서 추출된 얼굴영역과의 유사도를 측정하여 주민등록증 얼굴 영역의 위조여부를 판별한다.

  • PDF

Automatic Denoising of 2D Color Face Images Using Recursive PCA Reconstruction (2차원 칼라 얼굴 영상에서 반복적인 PCA 재구성을 이용한 자동적인 잡음 제거)

  • Park Hyun;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.63-71
    • /
    • 2006
  • Denoising and reconstruction of color images are extensively studied in the field of computer vision and image processing. Especially, denoising and reconstruction of color face images are more difficult than those of natural images because of the structural characteristics of human faces as well as the subtleties of color interactions. In this paper, we propose a denoising method based on PCA reconstruction for removing complex color noise on human faces, which is not easy to remove by using vectorial color filters. The proposed method is composed of the following five steps: training of canonical eigenface space using PCA, automatic extraction of facial features using active appearance model, relishing of reconstructed color image using bilateral filter, extraction of noise regions using the variance of training data, and reconstruction using partial information of input images (except the noise regions) and blending of the reconstructed image with the original image. Experimental results show that the proposed denoising method maintains the structural characteristics of input faces, while efficiently removing complex color noise.

Normalization of Face Images Subject to Directional Illumination using Linear Model (선형모델을 이용한 방향성 조명하의 얼굴영상 정규화)

  • 고재필;김은주;변혜란
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.54-60
    • /
    • 2004
  • Face recognition is one of the problems to be solved by appearance based matching technique. However, the appearance of face image is very sensitive to variation in illumination. One of the easiest ways for better performance is to collect more training samples acquired under variable lightings but it is not practical in real world. ]:n object recognition, it is desirable to focus on feature extraction or normalization technique rather than focus on classifier. This paper presents a simple approach to normalization of faces subject to directional illumination. This is one of the significant issues that cause error in the face recognition process. The proposed method, ICR(illumination Compensation based on Multiple Linear Regression), is to find the plane that best fits the intensity distribution of the face image using the multiple linear regression, then use this plane to normalize the face image. The advantages of our method are simple and practical. The planar approximation of a face image is mathematically defined by the simple linear model. We provide experimental results to demonstrate the performance of the proposed ICR method on public face databases and our database. The experimental results show a significant improvement of the recognition accuracy.

Effects of the facial expression presenting types and facial areas on the emotional recognition (얼굴 표정의 제시 유형과 제시 영역에 따른 정서 인식 효과)

  • Lee, Jung-Hun;Park, Soo-Jin;Han, Kwang-Hee;Ghim, Hei-Rhee;Cho, Kyung-Ja
    • Science of Emotion and Sensibility
    • /
    • v.10 no.1
    • /
    • pp.113-125
    • /
    • 2007
  • The aim of the experimental studies described in this paper is to investigate the effects of the face/eye/mouth areas using dynamic facial expressions and static facial expressions on emotional recognition. Using seven-seconds-displays, experiment 1 for basic emotions and experiment 2 for complex emotions are executed. The results of two experiments supported that the effects of dynamic facial expressions are higher than static one on emotional recognition and indicated the higher emotional recognition effects of eye area on dynamic images than mouth area. These results suggest that dynamic properties should be considered in emotional study with facial expressions for not only basic emotions but also complex emotions. However, we should consider the properties of emotion because each emotion did not show the effects of dynamic image equally. Furthermore, this study let us know which facial area shows emotional states more correctly is according to the feature emotion.

  • PDF

Efficient Face Detection using Adaboost and Facial Color (얼굴 색상과 에이다부스트를 이용한 효율적인 얼굴 검출)

  • Chae, Yeong-Nam;Chung, Ji-Nyun;Yang, Hyun-S.
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.7
    • /
    • pp.548-559
    • /
    • 2009
  • The cascade face detector learned by Adaboost algorithm, which was proposed by Viola and Jones, is state of the art face detector due to its great speed and accuracy. In spite of its great performance, it still suffers from false alarms, and more computation is required to reduce them. In this paper, we want to reduce false alarms with less computation using facial color. Using facial color information, proposed face detection model scans sub-window efficiently and adapts a fast face/non-face classifier at the first stage of cascade face detector. This makes face detection faster and reduces false alarms. For facial color filtering, we define a facial color membership function, and facial color filtering image is obtained using that. An integral image is calculated from facial color filtering image. Using this integral image, its density of subwindow could be obtained very fast. The proposed scanning method skips over sub-windows that do not contain possible faces based on this density. And the face/non-face classifier at the first stage of cascade detector rejects a non-face quickly. By experiment, we show that the proposed face detection model reduces false alarms and is faster than the original cascade face detector.

Face Segmentation Using Mosaic (모자이크를 이용한 얼굴 영역의 추출)

  • 이승훈;이필규
    • Proceedings of the Korea Database Society Conference
    • /
    • 1995.12a
    • /
    • pp.197-202
    • /
    • 1995
  • 본 논문에서는 조명, 얼굴 개수 및 얼굴의 크기에 제한 받지 않고 복잡한 배경에서 얼굴 영역을 추출하는 알고리즘을 제안한다. 이 알고리즘은 3단계로 구성된다. 첫번째 단계는 입력 영상의 평균 그레이값을 계산하고 그 값이 임계치보다 작다면 히스토그램 균일화 작업을 수행한다. 두번째 단계에서는 입력 영상의 모자이크 이미지를 만들고 이 이미지에 대해 확장된 quartet을 만들고 실험을 통해 얻어진 규칙을 적용하여 대략적으로 얼굴의 후보 영역들을 추출한다. 이 작업은 모자이크 이미지를 구성하는 셀의 크기를 변화시킬 때마다 적용한다. 세번째 단계에서는 추출된 얼굴 후보 영역에 대해 Octet을 만들고 이 octet에 규칙을 적용하여 후보 영역에 대한 검증 작업을 수행한다. 세번째 과정에서 만들어진 모자이크 이미지는 두 번째 과정에서 얻어진 이미지보다 더 세밀하게 얼굴의 특징들을 표현하고 검증한다.

  • PDF

The Real-Time Face Detection and Tracking System using Pan-Tilt Camera (Pan-Tilt 카메라를 이용한 실시간 얼굴 검출 및 추적 시스템)

  • 임옥현;김진철;이배호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.814-816
    • /
    • 2004
  • 본 논문에서는 웨이블릿을 이용한 알고리즘으로 얼굴을 검출하고 검출된 얼굴을 움직이는 Pan-Tilt 카메라상에서 추적하는 방법을 제안하고자 한다. 우리는 얼굴 검출을 위해 다섯 종류의 간단한 웨이블릿을 사용하여 특징을 추출하였고 AdaBoost(Adaptive Boosting) 알고리즘을 이용한 계층적 분류기를 통하여 추출된 특징들 중에서 얼굴을 검출하는데 강인한 특징들만을 모았다. 이렇게 만들어진 특징집합들을 이용하여 입력받은 영상에서 초당 20프레임의 실시간으로 얼굴을 검출하였고 영상에서 얼굴 위치와 Pan-Tilt 카메라 위치를 계산하여 실시간으로 움직임을 추적하는데 성공하였다.

  • PDF

Approximate Front Face Image Detection Using Facial Feature Points (얼굴 특징점들을 이용한 근사 정면 얼굴 영상 검출)

  • Kim, Su-jin;Jeong, Yong-seok;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.675-678
    • /
    • 2018
  • Since the face has a unique property to identify human, the face recognition is actively used in a security area and an authentication area such as access control, criminal search, and CCTV. The frontal face image has the most face information. Therefore, it is necessary to acquire the front face image as much as possible for face recognition. In this study, the face region is detected using the Adaboost algorithm using Haar-like feature and tracks it using the mean-shifting algorithm. Then, the feature points of the facial elements such as the eyes and the mouth are extracted from the face region, and the ratio of the two eyes and degree of rotation of the face is calculated using their geographical information, and the approximate front face image is presented in real time.

  • PDF