• Title/Summary/Keyword: 얼굴모델

Search Result 602, Processing Time 0.024 seconds

Facial Feature Extraction using an Active Shape Model with an Adaptive Mean Shape (적응적인 평균 모양을 이용한 동적 모양 모델 기반 얼굴 특징점 추출)

  • Kim Hyun-Chul;Kim Hyoung-Joon;Hwang Wonjun;Kee Seok-Cheol;Kim Whoi-Yul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.868-870
    • /
    • 2005
  • 본 논문은 포즈가 취해진 얼굴의 정확한 특징점 추출을 위하여 적응적인 평균 모양 방법을 이용한 ASM(Active Shape Model)을 제안한다. ASM은 사람 얼굴의 모양을 모델링하기 위하여 통계학상의 모양 모델을 이용한다. 통계학상의 모양 모델의 평균 모양은 입력 영상의 얼굴 포즈와 관계없이 하나로 고정되어 있으며, 이는 모양 모델 제한 조건 검사 및 복원과정에서 잘못된 결과를 만드는 원인이 된다. 이러한 문제를 해결하기 위하여 입력 영상의 얼굴 모양에 적응적인 평균 모양을 제안하며, 실험을 통해 제안한 방법이 고정된 평균 모양 방법의 문제를 해결하고 특징점 추출 성능을 향상시킴을 보였다.

  • PDF

Analysis on Practical Face Verification Models with Lightweight Networks (실용적인 경량 네트워크 얼굴 검증 모델 분석)

  • Ambardi, Laudwika;Park, In Kyu;Hong, Sungeun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.190-192
    • /
    • 2021
  • 얼굴 검증 기술은 출입통제 시스템이나 모바일 기기에서의 열람 또는 금융 서비스 등 보안이 요구되는 다양한 분야에서 널리활용되고 있다. 최근 얼굴 검증 분야에서 높은 성능 향상을 보인 대부분의 검증 모델은 깊은 네트워크를 사용하므로 상대적으로 매우 큰 컴퓨팅 파워를 요구한다. 따라서 해당 모델들을 실환경에 적용하기 위해서는 모델 경량화 기술에 대한 고려가 반드시 필요하다. 얼굴 검증 연구에서 경량화 기술의 중요성에도 불구하고 해당 연구는 이제까지 잘 다뤄지지 않았다. 본 논문은 주요 얼굴 검증 모델에 대해서 지식 증류 기술을 수행하고, 이에 따른 실험 결과를 비교 분석하여 제시함으로써 경량화 기술 적용에 대한 방향성을 제시한다.

  • PDF

Facial Feature Extraction for Face Expression Recognition (얼굴 표정인식을 위한 얼굴요소 추출)

  • 이경희;고재필;변혜란;이일병;정찬섭
    • Science of Emotion and Sensibility
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 1998
  • 본 논문은 얼굴인식 분야에 있어서 필수 과정인 얼굴 및 얼굴의 주요소인 눈과 입의 추출에 관한 방법을 제시한다. 얼굴 영역 추출은 복잡한 배경하에서 움직임 정보나 색상정보를 사용하지 않고 통계적인 모델에 기반한 일종의 형찬정합 방법을 사용하였다. 통계적인 모델은 입력된 얼굴 영상들의 Hotelling변환 과정에서 생성되는 고유 얼굴로, 복잡한 얼굴 영상을 몇 개의 주성분 갑으로 나타낼 수 있게 한다. 얼굴의 크기, 영상의 명암, 얼굴의 위치에 무관하게 얼굴을 추출하기 위해서, 단계적인 크기를 가지는 탐색 윈도우를 이용하여 영상을 검색하고 영상 강화 기법을 적용한 후, 영상을 고유얼굴 공간으로 투영하고 복원하는 과정을 통해 얼굴을 추출한다. 얼굴 요소의 추출은 각 요소별 특성을 고려한 엣지 추출과 이진화에 따른 프로젝션 히스토그램 분석에 의하여 눈과 입의 경계영역을 추출한다. 얼굴 영상에 관련된 윤곽선 추출에 관한 기존의 연구에서 주로 기하학적인 모양을 갖는 눈과 입의 경우에는 주로 가변 템플릿(Deformable Template)방법을 사용하여 특징을 추출하고, 비교적 다양한 모양을 갖는 눈썹, 얼굴 윤곽선 추출에는 스네이크(Snakes: Active Contour Model)를 이용하는 연구들이 이루어지고 있는데, 본 논문에서는 이러한 기존의 연구와는 달리 스네이크를 이용하여 적절한 파라미터의 선택과 에너지함수를 정의하여 눈과 입의 윤곽선 추출을 실험하였다. 복잡한 배경하에서 얼굴 영역의 추출, 추출된 얼굴 영역에서 눈과 입의 영역 추출 및 윤곽선 추출이 비교적 좋은 결과를 보이고 있다.

  • PDF

Optimal Hyper Parameter for Korean Face Data Generation with BEGAN (BEGAN을 통해 한국인 얼굴 데이터 생성을 하는데 최적의 HyperParameter)

  • Cho, Kyu Cheol;Kim, San
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.459-460
    • /
    • 2021
  • 본 논문에서는 BEGAN을 활용한 한국인 얼굴 데이터 생성을 위한 최적의 Hyper Parameter를 제안한다. 연구에서는 GAN의 발전된 모델인 BEGAN을 이용한다. 위의 모델을 작성하기 위하여 본 논문에서는 Anaconda 기반의 Jupyter Notebook에서 Python Tensorflow 모델을 작성하여 테스트하고, 만들어진 모델을 FID를 통해 모델의 성능을 비교한다. 본 연구에서는 제안하는 방법들을 통해서 만들어진 모델을 이용해 한국인 얼굴 데이터를 구하고, 생성된 이미지에 대한 정량적인 평가를 진행한다.

  • PDF

3D Face Modeling Using Feature Line Fitting (특징선 정합을 이용한 3차원 얼굴 모델링)

  • 김항기;김황수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.505-507
    • /
    • 2000
  • 본 논문에서는 3차원 머리 모델에 몇 장의 사진으로부터 얻은 텍스쳐를 입혀 실물처럼 보이는 3차원 인물 모델을 얻는 방법을 제시한다. 모델에 사진들을 맞추는 방법으로는 특징선을 정합하는 방법을 사용한다. 모델에는 얼굴의 특징을 나타낼 수 있는 눈/코/입/눈썹 등의 특징선을 지정하였으며 이들을 사진에 정합시킴으로써 모델의 각 부위에 필요한 텍스쳐 영상을 얻는다. 여러 방향에서 본 사진들을 사용함으로써 더욱 정확한 얼굴 모델을 얻을 수 있는데, 이때 모델의 한 면은 여러 장의 사진에서 합성되어야 하는 경우가 생긴다. 이는 각 사진에서 얼굴이 보는 방향과 모델면이 이루는 각을 이용하여 그 사진이 그 면의 텍스쳐에 기여하는 정도를 계산할 수 있다. 이렇게 함으로써 사진을 이용한 저가의 3차원 캡쳐 시스템을 구현할 수 있다.

  • PDF

Face Detection Using Active Contours (Active Contours를 사용한 얼굴 검출)

  • 정도준;장재식;박세현;김항준
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.195-199
    • /
    • 2002
  • 본 논문에서는 주어진 입력 이미지에서 얼굴 영역을 검출하기 위한 액티브 컨투어 모델(active contour models)을 제안한다. 제안한 모델은 스킨 칼라 모델(skin color model)에 의해 표현되는 사람 얼굴의 칼라 정보를 이용한다. 본 논문에서는 첨점(cusps), 모서리 (corners), 그리고 자동 위상 변화(automatic topological changes)를 고려한 레벨 셋 메소드(level set method)를 사용하여 액티브 컨투어를 진화시킨다. 실험 결과는 제안한 방법이 얼굴 영역 검출에 효과가 있음을 보여준다.

  • PDF

Multiresolution 3D Facial Model Compression (다해상도 3D 얼굴 모델의 압축)

  • 박동희;이종석;이영식;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.602-607
    • /
    • 2002
  • In this paper, we proposed an approach to efficiently compress and transmit multiresoltion 3D lariat models for multimedia and very low bit rate applications. A personal facial model is obtained by a 3D laser digitizer, and further re-quantized at several resolutions according to different scope of applications, such as animation, video game, and video conference. By deforming 2D templates to match and re-quantize a 3D digitized facial model, we obtain its compressed model. In the present study, we create hierarchical 2D lariat wireframe templates are adapted according to facial feature points and the proposed piecewise chainlet affined transformation(PACT) method. The 3D digitized model after requantization are reduced significantly without perceptual loss. Moreover the proposed multiresoulation lariat models possessed of hierarchial data structure are apt to be progressively transmitted and displayed across internet.

  • PDF

Face Recognition Network using gradCAM (gradCam을 사용한 얼굴인식 신경망)

  • Chan Hyung Baek;Kwon Jihun;Ho Yub Jung
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.9-14
    • /
    • 2023
  • In this paper, we proposed a face recognition network which attempts to use more facial features awhile using smaller number of training sets. When combining the neural network together for face recognition, we want to use networks that use different part of the facial features. However, the network training chooses randomly where these facial features are obtained. Other hand, the judgment basis of the network model can be expressed as a saliency map through gradCAM. Therefore, in this paper, we use gradCAM to visualize where the trained face recognition model has made a observations and recognition judgments. Thus, the network combination can be constructed based on the different facial features used. Using this approach, we trained a network for small face recognition problem. In an simple toy face recognition example, the recognition network used in this paper improves the accuracy by 1.79% and reduces the equal error rate (EER) by 0.01788 compared to the conventional approach.

3D Face Modeling from a Frontal Face Image by Mesh-Warping (메쉬 워핑에 의한 정면 영상으로부터의 3D 얼굴 모델링)

  • Kim, Jung-Sik;Kim, Jin-Mo;Cho, Hyung-Je
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.1
    • /
    • pp.108-118
    • /
    • 2013
  • Recently the 3D modeling techniques were developed rapidly due to rapid development of computer vision, computer graphics with the excellent performance of hardware. With the advent of a variety of 3D contents, 3D modeling technology becomes more in demand and it's quality is increased. 3D face models can be applied widely to such contents with high usability. In this paper, a 3D face modeling is attempted from a given single 2D frontal face image. To achieve the goal, we thereafter the feature points using AAM are extracted from the input frontal face image. With the extracted feature points we deform the 3D general model by 2-pass mesh warping, and also the depth extraction based on intensity values is attempted to. Throughout those processes, a universal 3D face modeling method with less expense and less restrictions to application environment was implemented and it's validity was shown through experiments.

3D Feature Point Based Face Segmentation in Depth Camera Images (깊이 카메라 영상에서의 3D 특징점 기반 얼굴영역 추출)

  • Hong, Ju-Yeon;Park, Ji-Young;Kim, Myoung-Hee
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.454-455
    • /
    • 2012
  • 깊이 카메라에서 입력 받은 사용자의 얼굴 데이터에 morphable 모델을 fitting하여 실제 얼굴과 가까운 3D 얼굴 모델을 생성하기 위해서는 먼저 깊이 영상으로부터의 정확한 얼굴 영역 추출이 필요하다. 이를 위해 얼굴의 특징점을 기반으로 얼굴 영역 추출을 시도한다. 먼저 원본 깊이 영상을 보정하고, 컬러 영상으로부터 얼굴과 눈, 코의 영역을 탐색한 후 이를 깊이 영상에 대응시켜 눈, 코, 턱의 3차원 위치를 계산한다. 이렇게 결정된 얼굴의 주요 특징점들을 시작으로 영역을 확장함으로써 영상의 배경으로부터 얼굴 영역을 분리한다.