본 연구는 제 2언어 억양습득 과정에서 나타나는 언어 보편적 간섭현상인 피치대역(음역) 축소현상과모국어 간섭현상이 어떤 양상으로 상호작용하며 한국어 습득과정에서 어떤 순서로 나타나는지 중국인 한국어 학습자들을 통해 살펴보았다. 본 연구에는 7명의 한국어 원어민 화자와 초·중·고급 수준의 중국인 한국어 학습자 각 10명 총 37명이 발화 실험에 참여하였다. 연구 참여자들은 난이도가 다른 한국어 담화 4개와 이를 중국어로 번역한 중국어 담화 4개를 낭독 발화하였다. 한국어화자와 중국인 학습자들이 산출한 음성자료는 음성분석 프로그램 Praat을 사용하여 각 문장별로 Pitch span, Pitch level, Pitch dynamic quotient(PDQ), 왜도와 첨도를 측정하였고 이후 언어 간 분석, 그룹 간 분석, 그룹 내 분석을 통해 두 현상의 상호작용양상을 살펴보았다. 언어 간 분석결과 중국어는 한국어보다 높은 Pitch span과 Pitch level로 특징지어졌다. 이를 바탕으로 초·중·고급 중국인 학습자들의 한국어 발화문에 대한 그룹 간 분석을 실시하였다. 그 결과 초급과 중급 학습자들에게서는 모국어 간섭보다는 음역 축소현상이 두드러지게 나타났으며 고급 학습자들은 음역 축소현상이 완화되어 한국 화자에 근접한 양상을 보여주었다. 중국인 학습자들이 발화한 목표어인 한국어와 모국어인 중국어 문장을 대상으로 한 그룹 내 분석에서도 숙달도가 높을수록 모국어와 목표어 간 피치 편차가 줄어들어 음역 축소현상이 완화되었다. 문장 내 피치 변동 범위를 파악하기 위한 PDQ분석에서 중국어 문장은 한국어 문장보다 음역 변동범위가 크다는 것을 알 수 있었다. 그룹 간 분석에서는 초·중급 학습자들의 PDQ가 한국어와 중국어보다 현저히 낮은 값을 보였다. 고급학습자들도 한국어나 중국어보다 낮은 수치를 보였으나 한국어에 근접한 양상으로 나타났다. 이상의 결과를 바탕으로 숙달도가 낮은 화자일수록 음역 축소 현상이 두드러지게 나타나며 고급 화자의 경우 목표어인 한국어와 유사한 양상으로 실현됨을 알 수 있었다. 따라서 본 연구의 분석 대상인 음성학적 층위에서는 모국어 간섭현상이 뚜렷하게 관찰되지 않았다.
본 연구는 간호대학생의 언어폭력 경험이 전공만족도, 실습만족도, 간호전문직관에 어떤 영향을 미치는지 살펴보고자 실시하였다. 연구대상자는 .G시와 P시에 소재한 2개 간호대학생 3,4학년 237명이며, 구조화된 설문지를 분석하였다. 연구결과는 전공만족도는 성(F=1,50, p<.001), 학년(F=-2.38, p<.001), 간호학 선택동기(t=6.79, p<.000)에 따라 유의한 차이가 있는 것으로 나타났다. 언어폭력 경험은 전공만족도(r=-.298, p<.001), 실습만족도(r=.-.348, p<.001), 전문직관(r=.-.4071, p<.001)과 통계적으로 유의한 음(-)의 상관관계가있는것으로 나타났다. 본 연구를 통해 간호대학생의 언어폭력경험은 전문직관(β=.305, p<.001), 전공만족도(β=259, p<.001), 실습만족도(β=142, p=.003)에 영향을 미치는 것으로 나타낫으며, 이들 변수의 설명력은 25.9%이었다. 간호대학생의 언어폭력에 대처할 수 있는 프로그램개발이 필요하다.
본 연구는 재한 중국인 유학생들의 문화정체감, 학습 동기, 학습전략 및 제2 언어 습득의 경향을 분석함으로써 이 네 가지 변인의 구조 관계를 밝히고 이를 통해 한국어 학습 과정에서 유학생의 문화정체감과 학습 동기, 학습전략을 촉진하는 데 있어서 기초자료를 제공하는 데 그 목적이 있다. 본 연구는 200명을 대상으로 예비조사를 통해 신뢰도와 타당성을 검증하였다. 본조사는 2023년 5월 28일부터 6월 15일까지 서울, 경기도, 부산, 충청도 소재 6개 대학의 중국유학생 1,006명을 대상으로 설문을 실시하였다. 연구결과, 첫째, 변인 간의 구조적 관계는, 문화정체감은 학습 동기, 학습전략 및 제2언어 습득에 정적으로 영향을 주었다. 둘째, 학습 동기는 학습전략, 제2언어 습득에 정적(+)으로 영향을 주었다. 셋째, 학습전략은 제2언어 습득에 정적(+)으로 영향을 주었다. 넷째, 문화정체감과 학습전략 간의 학습동기와 학습전략은 정적인(+) 매개 역할과 다중 매개 역할을 하는 것으로 나타났다. 따라서 국어 학습 과정에서 유학생의 문화정체감과 학습 동기, 학습전략을 촉진하기 위해서 유학생들의 문화정체감 형성의 직접적 체험을 기회를 늘리고 실제 중심의 다각적인 교육과정의 편성 및 교수법이 필요함을 시사하고 있다.
방통융합시대가 도래함에 따라 방송망뿐만 아니라 IP망을 통해 콘텐츠를 소비할 수 있는 스마트TV의 보급이 급속히 확산되고 있다. 또한 영상과 음악 및 광고와 같은 멀티미디어 콘텐츠의 소비 환경이 한 화면에 한 가지의 미디어 서비스만 제공받는 환경에서 다양한 정보를 동시에 소비할 수 있는 환경으로 확대되면서 다양한 정보를 하나의 화면에서 혼용적으로 전달하기 위한 장면구성정보가 필요하게 되었다. 장면구성정보는 미디어가 소비되는 특정 시간과 해당 공간의 정보를 기술하므로써 다수의 미디어를 복합적으로 소비하는 방법으로, IP 기반에서도 여러 개의 화면을 통해 여러 소스의 콘텐츠를 소비하여 다양한 사용자 경험(User Experience)를 제공하고자 ISO/IEC JTC1/SC29/WG11(별칭 MPEG)에서는 방송서비스에서 방송망 및 IP망을 활용하여 멀티미디어 데이터를 전송할 때 사용하는 MPEG Media Transport(MMT)를 기반으로 장면구성정보를 제공하기 위한 MMT-Composition Information(MMT-CI)를 기술표준화하였다. 본 논문에서는 MMT-CI의 표준문서에 따라 W3C의 웹언어인 HTML5와 확장성 언어인 XML을 이용하여 멀티소스를 활용한 장면구성정보를 기술하는 것을 제안하고 장면구성서비스에 적용을 위한 플레이어를 구현 및 검증한다.
최근 COVID-19로 인해 대중의 의학 분야 관심이 증가하고 있다. 대부분의 의학문서는 전문용어인 의학용어로 구성되어 있어 대중이 이를 보고 이해하기에 어려움이 있다. 의학용어를 쉬운 뜻으로 풀이하는 모델을 이용한다면 대중이 의학 문서를 쉽게 이해할 수 있을 것이다. 이런 문제를 완화하기 위해서 본 논문에서는 Transformer 기반 번역 모델을 이용한 의학용어 탐지 및 해석 모델을 제안한다. 번역 모델에 적용하기 위해 병렬말뭉치가 필요하다. 본 논문에서는 다음과 같은 방법으로 병렬말뭉치를 구축한다: 1) 의학용어 사전을 구축한다. 2) 의학 드라마의 자막으로부터 의학용어를 찾아서 그 뜻풀이로 대체한다. 3) 원자막과 뜻풀이가 포함된 자막을 나란히 배열한다. 구축된 병렬말뭉치를 이용해서 Transformer 번역모델에 적용하여 전문용어를 찾아서 해석하는 모델을 구축한다. 각 문장은 음절 단위로 나뉘어 사전학습 된 KoCharELECTRA를 이용해서 임베딩한다. 제안된 모델은 약 69.3%의 어절단위 BLEU 점수를 보였다. 제안된 의학용어 해석기를 통해 대중이 의학문서를 좀 더 쉽게 접근할 수 있을 것이다.
대화 모델은 대표적으로 검색 모델 또는 생성 모델을 기반으로 구현된다. 최근에는 두 모델의 장점은 융합하고 단점은 보완하기 위해 검색 기법과 생성 기법을 결합하는 연구가 활발히 이루어지고 있다. 그러나 생성 모델이 검색된 응답을 전혀 반영하지 않고 응답을 생성하여 검색 모델을 간과하는 문제 또는 검색된 응답을 그대로 복사해 생성하여 검색 모델에 과의존하는 문제가 발생한다. 본 논문에서는 이러한 문제들을 완화하며 검색 모델과 생성 모델을 모두 조화롭게 활용할 수 있는 대화 모델을 제안한다. 생성 모델이 검색 모델을 간과하는 문제를 완화하기 위해 학습 시 골드 응답을 검색된 응답과 함께 사용한다. 또한, 검색 모델에 과의존하는 문제를 완화하기 위해 검색된 응답들의 내용어 일부를 마스킹하고 순서를 무작위로 섞어 노이징한다. 검색된 응답은 대화 컨텍스트와의 관련성이 높은 것만을 선별하여 생성에 활용한다. 정량 평가 및 정성 평가를 통해 제안한 방법의 성능 향상 효과를 확인하였다.
본 논문에서는 Self-Attention을 활용한 딥러닝 기반 문맥의존 철자오류 교정 모델을 제안한다. 문맥의존 철자오류 교정은 최근 철자오류 교정 분야에서 활발히 연구되고 있는 문제 중 하나이다. 기존에는 규칙 기반, 확률 기반, 임베딩을 활용한 철자오류 교정이 연구되었으나, 아직 양질의 교정을 수행해내기에는 많은 문제점이 있다. 따라서 본 논문에서는 기존 교정 모델들의 단점을 보완하기 위해 Self-Attention을 활용한 문맥의존 철자오류 교정 모델을 제안한다. 제안 모델은 Self-Attention을 활용하여 기존의 임베딩 정보에 문맥 의존적 정보가 반영된 더 나은 임베딩을 생성하는 역할을 한다. 전체 문장의 정보가 반영된 새로운 임베딩을 활용하여 동적으로 타겟 단어와의 관련 단어들을 찾아 문맥의존 철자 오류교정을 시행한다. 본 논문에서는 성능평가를 위해 세종 말뭉치를 평가 데이터로 이용하여 제안 모델을 실험하였고, 비정형화된 구어체(Kakao Talk) 말뭉치로도 평가 데이터를 구축해 실험한 결과 비교 모델보다 높은 정확율과 재현율의 성능향상을 보였다.
본 논문에서는 소프트웨어 정의 네트워크를 이용한 한중일 한자-한국어 변환 키워드 도메인 이름 시스템을 제안하였다. 한자 체계를 주로 사용하는 한국, 중국, 일본에서 세 나라의 한자 수량이 너무 많기 때문에 우선 한국, 중국, 일본이 공용으로 사용하는 한자 체계인 CJK808을 가지고 연구하였다. 연구를 통해 CJK808 한자 체계에서 각 나라의 한자 특징도 많이 발견하였고, 그 중에서 표준자와 이체자의 다양성이 더욱 두드러졌다. SDN을 이용함으로써 관리 측면에서 다양한 이점을 얻을 수 있다. 제안하는 시스템을 통하여 사용자들은 한국, 중국, 일본 한자를 입력하면 SDN에서 관리하는 도메인 네임 서버를 통해 IP 주소를 얻을 수 있다.
최근 GPT-3 와 LLaMa 같은 생성형 거대 언어모델을 활용한 서비스가 공개되었고, 실제로 많은 사람들이 사용하고 있다. 해당 모델들은 사용자들의 다양한 질문에 대해 유창한 답변을 한다는 이유로 주목받고 있다. 하지만 LLMs 의 답변에는 종종 Inconsistent content 와 non-factual statement 가 존재하며, 이는 사용자들로 하여금 잘못된 정보의 전파 등의 문제를 야기할 수 있다. 이에 논문에서는 동일한 질문에 대한 LLM 의 답변 샘플과 외부 지식을 활용한 Hallucination Detection 방법을 제안한다. 제안한 방법은 동일한 질문에 대한 LLM 의 답변들을 이용해 일관성 점수(Consistency score)를 계산한다. 거기에 외부 지식을 이용한 사실검증을 통해 사실성 점수(Factuality score)를 계산한다. 계산된 일관성 점수와 사실성 점수를 활용하여 문장 수준의 Hallucination Detection 을 가능하게 했다. 실험에는 GPT-3 를 이용하여 WikiBio dataset 에 있는 인물에 대한 passage 를 생성한 데이터셋을 사용하였으며, 우리는 해당 방법을 통해 문장 수준에서의 Hallucination Detection 성능이 baseline 보다 AUC-PR scores 에서 향상됨을 보였다.
언어와 감정 사이의 복잡한 관계의 특징을 보이며, 우리의 말을 통해 감정을 식별하는 것은 중요한 과제로 인식된다. 이 연구는 음성 및 텍스트 데이터를 모두 포함하는 다중 모드 분류 작업을 통해 음성 언어의 감정을 식별하기 위해 속성 엔지니어링을 사용하여 이러한 과제를 해결하는 것을 목표로 한다. CNN(Convolutional Neural Networks)과 LSTM(Long Short-Term Memory)이라는 두 가지 분류기를 BERT 기반 사전 훈련된 모델과 통합하여 평가하였다. 논문에서 평가는 다양한 실험 설정 전반에 걸쳐 다양한 성능 지표(정확도, F-점수, 정밀도 및 재현율)를 다룬다. 이번 연구 결과는 텍스트와 음성 데이터 모두에서 감정을 정확하게 식별하는 두 모델의 뛰어난 능력을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.