WSD(word sense disambiguation) is one of the most difficult problems in Korean information processing. The Bayesian model that used semantic information, extracted from definition corpus(1 million POS-tagged eojeol, Korean dictionary definitions), resulted in accuracy of 72.08% (nouns 78.12%, verbs 62.45%). This paper proposes the statistical WSD model using NPH(New Prior Probability of Homonym sense) and distance weights. We select 46 homonyms(30 nouns, 16 verbs) occurred high frequency in definition corpus, and then we experiment the model on 47,977 contexts from ‘21C Sejong Corpus’(3.5 million POS-tagged eojeol). The WSD model using NPH improves on accuracy to average 1.70% and the one using NPH and distance weights improves to 2.01%.
Kim, Jung-Ho;Cha, Myung-Hoon;Kim, Myung-Kyu;Chae, Soo-Hoan
Proceedings of the Korean Information Science Society Conference
/
2010.06c
/
pp.285-290
/
2010
인터넷이 대중화됨에 따라 누구나 쉽게 자신의 의견을 온라인상에 표현할 수 있게 되었다. 그 결과 생각이나 느낌을 나타내는 의견 데이터들의 양이 급속도로 방대해졌으며, 이러한 데이터들을 이용한 여러 응용 사례들의 등장으로, 효율적인 검색 및 자동 분류 기술이 요구되고 있다. 이런 기술적 흐름에 맞추어 의견 데이터 분류에 관한 여러 연구들이 이루어져 왔다. 이러한 의견 분류에 대한 연구들을 살펴보면, 분류를 위해 자질(Feature)로서 사용한 단일어(Single word)가 아닌 2개 이상의 N-gram 단어, 어휘 구문 패턴 및 통사 구문 패턴 등을 사용한다. 특히, 패턴은 단일어나 N-gram 단어에 비해 유연하고, 언어학적으로 풍부한 정보를 표현할 수 있기 때문에 이를 주요 연구 주제로 사용되었다. 그럼에도 불구하고, 이러한 연구들은 주로 영어에 대한 연구들이었으며, 한국어에 패턴을 적용하여 주관성을 갖는 문장을 분류하거나, 극성을 분류하는 연구들은 아직 미비하다. 한국어의 특색으로 한국어는 용언의 활용이 발달되어 있어, 어미의 변화가 다양하며, 그 변화에 따라 의미가 미묘하게 변화한다. 그러나 기존 한국어에 대한 의견 분류 연구들은 단어의 핵심 의미만을 파악하기 위해 어미 부분을 제거하고 어간만을 취해서 처리하여 어미에 대한 의미변화를 고려하지 못하므로 분류 정확도가 영어권에 연구 결과에 비해 떨어진다. 그래서 본 연구는 영어에 적용된 패턴을 이용한 기존 방법들을 정리하고, 그 방법들 중에서 극성을 지닌 문장성분 패턴을 한국어에 적용하였다. 그리고 어미의 변화에 대한 패턴을 추출하여 이 변화가 의견 분류의 성능에 미치는 영향을 분석하였다.
Kim, Sung-Yuk;Jang, Ju-Gwang;Ji, Hyo-Seong;Kim, Ok-Whan;Kim, Key-Sun
Journal of the Korean Society of Manufacturing Process Engineers
/
v.18
no.2
/
pp.29-37
/
2019
In this study, emotional adjectives about the operating sound quality of the vehicle power seat are constructed, and the effectiveness of the emotional adjectives are verified by evaluating the operating sound quality. First, emotional adjectives were collected from the literature related to the automobile field and other sound qualities. A questionnaire was made using these adjectives. The questionnaire was designed to be able to select all adjectives that could express the operating noise of the power seat slide adjuster by applying the multiple- response method. Next, a subjective sound quality evaluation was conducted using the emotional adjectives. In the evaluation, we first recorded the operating noise for two power seats. Second, the subjective sound quality evaluation was performed on the recorded operating noise using a loudspeaker. Finally, through a statistical analysis on the sound quality evaluation results, the relationship between the semantic space and the preference score was verified, and the validity of the emotional adjectives was verified.
The first step of this study is to collect appropriate words from the list of words in the relationship. All vocabularies that are unfamiliar-but capable of guessing the meaning and expressing interpersonal relationships-were collected from three Korean dictionaries. Consequently, a compilation of 2,725 words was created; overlapping words were selected; and 910 words were chosen. Only grammatical forms were found; however, words with similar meanings-or identical meanings-were also found, and a reclassification process was required to reflect this. These procedures were repeated seven times, resulting in a total of 249 words being screened. However, due to the characteristics of this study, the number of words needs to be reduced because the meaning of words is more specific and summarized, and the overall interpersonal aspect is well expressed. Therefore, the process of reclassifying 249 words by their familiarity and appropriateness was subsequently undertaken, and the word with the highest level of familiarity and appropriateness was finally selected.
The Journal of the Convergence on Culture Technology
/
v.7
no.4
/
pp.745-750
/
2021
In Big data visualization analysis of unstructured text data, raw data is mostly large-capacity, and analysis techniques cannot be applied without cleansing it unstructured. Therefore, from the collected raw data, unnecessary data is removed through the first heuristic cleansing process and Stopwords are removed through the second machine cleansing process. Then, the frequency of the vocabulary is calculated, visualized using the word cloud technique, and key issues are extracted and informationalized, and the results are analyzed. In this study, we propose a new Stopword cleansing technique using an external Stopword set (DB) in Python word cloud, and derive the problems and effectiveness of this technique through practical case analysis. And, through this verification result, the utility of the practical application of word cloud analysis applying the proposed cleansing technique is presented.
Park, Ki Ryoung;Park, So Hee;Kim, Jun seo;Koo, Dukhoi
한국정보교육학회:학술대회논문집
/
2021.08a
/
pp.141-148
/
2021
The mainstream tool for software education for elementary students is Educational Programming Language. It is essential for upper graders to advance from EPL to text based programming language. However, many students experience difficulty in adopting to this change since Python is run in English. Python is an actively used TPL. This study focuses on developing an education program to facilitate learning Python for Korean speaking students. We have extracted the necessary reserved words needed for data analysis in Python. Then we replaced the extracted words into Korean terms that could be understood in elementary level. The replaced terms were matched on one-to-one correspondence with reserved words used in Python. This devised program would assist students in experiencing data analysis with Python. We expect that this education program will be applied effectively as a basic resource to learn TPL.
The Journal of the Convergence on Culture Technology
/
v.9
no.6
/
pp.935-940
/
2023
Most text data collected through web scraping for artificial intelligence and big data analysis is generally large and unstructured, so a purification process is required for big data analysis. The process becomes structured data that can be analyzed through a heuristic pre-processing refining step and a post-processing machine refining step. Therefore, in this study, in the post-processing machine refining process, the Korean dictionary and the stopword dictionary are used to extract vocabularies for frequency analysis for word cloud analysis. In this process, "user-defined stopwords" are used to efficiently remove stopwords that were not removed. We propose a methodology for applying the "thesaurus" and examine the pros and cons of the proposed refining method through a case analysis using the "user-defined stop word thesaurus" technique proposed to complement the problems of the existing "stop word dictionary" method with R's word cloud technique. We present comparative verification and suggest the effectiveness of practical application of the proposed methodology.
After COVID-19, communication through online platforms has increased, leading to an accumulation of massive amounts of conversational text data. With the growing importance of summarizing this text data to extract meaningful information, there has been active research on deep learning-based abstractive summarization. However, conversational data, compared to structured texts like news articles, often contains missing or transformed information, necessitating consideration from multiple perspectives due to its unique characteristics. In particular, vocabulary omissions and unrelated expressions in the conversation can hinder effective summarization. Therefore, in this study, we restructured by considering the characteristics of Korean conversational data, fine-tuning a pre-trained text summarization model based on KoBART, and improved conversation data summary perfomance through a refining operation to remove redundant elements from the summary. By restructuring the sentences based on the order of utterances and extracting a central speaker, we combined methods to restructure the conversation around them. As a result, there was about a 4 point improvement in the Rouge-1 score. This study has demonstrated the significance of our conversation restructuring approach, which considers the characteristics of dialogue, in enhancing Korean conversation summarization performance.
Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
Science of Emotion and Sensibility
/
v.13
no.3
/
pp.449-458
/
2010
As occasion demands to obtain efficient information from many documents and reviews on the Internet in many kinds of fields, automatic classification of opinion or thought is required. These automatic classification is called sentiment classification, which can be divided into three steps, such as subjective expression classification to extract subjective sentences from documents, sentiment classification to classify whether the polarity of documents is positive or negative, and strength classification to classify whether the documents have weak polarity or strong polarity. The latest studies in Opinion Mining have used N-gram words, lexical phrase pattern, and syntactic phrase pattern, etc. They have not used single word as feature for classification. Especially, patterns have been used frequently as feature because they are more flexible than N-gram words and are also more deterministic than single word. Theses studies are mainly concerned with English, other studies using patterns for Korean are still at an early stage. Although Korean has a slight difference in the meaning between predicates by the change of endings, which is 'Eomi' in Korean, of declinable words, the earlier studies about Korean opinion classification removed endings from predicates only to extract stems. Finally, this study introduces the earlier studies and methods using pattern for English, uses extracted sentimental patterns from Korean documents, and classifies polarities of these documents. In this paper, it also analyses the influence of the change of endings on performances of opinion classification.
Sentiment analysis is concerned with extracting and analyzing different kinds of user sentiment expressed in a variety of social media such as blog and twitter. Although sentiment analysis techniques are actively studied for these days, evaluation sets are not developed yet for Korean sentiment analysis. In this paper, we constructed an evaluation set for Korean sentiment analysis. To evaluate sentiment analysis systems more throughly, each sentence in our evaluation set is tagged with the polarity of the sentiment as well as the category and the strength of the sentiment. We divide kinds of sentiment into 7 positive categories and 15 negative categories. Each category is given the strength of the sentiment from 1 to 3. Our evaluation set consists of 3,270 sentences extracted from various social media. For each sentence, 5 human taggers assigned the category and the strength of the sentiment expressed in the sentence. The ratio of inter-taggers agreement was 93% in the polarity, 70% in the category, 58% in the strength of sentiment. The ratio of inter-taggers agreement our evaluation set is a bit higher than other evaluation sets developed for German and Spanish. This result shows our evaluation set can be used as a reliable resource for the evaluation of sentiment analysis systems.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.