• Title/Summary/Keyword: 어레이 센서

Search Result 234, Processing Time 0.028 seconds

A Design of CMOS ROIC with Reduced Fixed Pattern Noise for Infrared Image Sensor Applications (고정패턴잡음 제거를 위한 적외선 이미지 센서용 CMOS 검출회로 설계에 관한 연구)

  • Shin, Ho-Hyun;Hwang, Sang-Jun;Yu, Seung-Woo;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.16-17
    • /
    • 2006
  • 적외선 이미지 센서용으로 사용되는 마이크로 볼로미터 센서는 process variation으의 인하여 모든 볼로미터 센서의 셀이 정확한 저항값을 갖지 못하여 입력신호에 왜곡을 가져 온다. 본 논문에서는 적외선 이미지 센서용 CMOS 검출회로를 설계하는 데 있어, 이러한 볼로미터 셀 어레이의 고정패턴잡음(Fixed Pattern hoise)을 최소화하는 방법에 대해 연구하였다. 기존의 단일 입력 방식 검출회로는 볼로미터 셀어레이의 고정패턴잡음을 보정하기 위하여 추가적인 보정 회로를 필요로 하였다. 이러한 문제점을 해결하기 위해서 본 논문에서는 차동 입력 방식 검출회로를 제안하였으며, 이를 적용하여 출력을 살펴본 결과 추가적인 보정회로 없이 20%의 노이즈 감쇠효과를 얻을 수 있다. 연구 결과를 바탕으로 32${\times}$32 크기를 갖는 셀어레이의 볼로미터를 구성하여 전체 칩을 설계하였으며 컴퓨터 시물레이션을 통해 결과를 분석하였다.

  • PDF

Direction of Arrival Estimation in Colored Noise Using Wavelet Decomposition (웨이브렛 분해를 이용한 유색잡음 환경하의 도래각 추정)

  • Kim, Myoung-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.48-59
    • /
    • 2000
  • Eigendecomposition based direction-of-arrival(DOA) estimation algorithm such as MUSIC(multiple signal classification) is known to perform well and provide high resolution in white noise environment. However, its performance degrades severely when the noise process is not white. In this paper we consider the DOA estimation problem in a colored noise environment as a problem of extracting periodic signals from noise, and we take the problem to the wavelet domain. Covariance matrix of multiscale components which are obtained by taking wavelet decomposition on the noise has a special structure which can be approximated with a banded sparse matrix. Compared with noise the correlation between multiscale components of narrowband signal decays slowly, hence the covariance matrix does not have a banded structure. Based on this fact we propose a DOA estimation algorithm that transforms the covariance matrix into wavelet domain and removes noise components located in specific bands. Simulations have been carried out to analyze the proposed algorithm in colored noise processes with various correlation properties.

  • PDF

A Study on Direction Finding Technique for Array with Faulty Elements (결함소자를 갖는 어레이를 위한 방향 탐지 기법에 관한 연구)

  • Kim, Ki-Man;Youn, Dae-Hee;Cha, Il-Whan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.71-75
    • /
    • 1997
  • In this paper, some problems that occur from faulty elements in a direction finding system composed of the linear array are studied and the method which improves the performance is proposed. The fault element means the sensor that has no output or highly reduced gain than other normal sensors. In the case of the presence of faulty elements, the performance of the conventional the spatial spectrum subject to a constraint. The corrected spatial spectrum is obtained by this vector. The computer simulations have been performed to study the performance of the proposed method. We have compared the proposed method with the subaperture processing method of one of the previous works.

  • PDF

A Design of Signal Transport System with High Reliability in an Underwater Sensor Array (수중 센서 어레이에서 고 신뢰성을 고려한 신호 전송 시스템 설계)

  • Son Dong-Hwan;Chung Hyun-Ju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.4 s.19
    • /
    • pp.13-19
    • /
    • 2004
  • A system for detecting underwater target demands a high operational reliability because of the difficulty of maintenance and repair when the system has a few troubles during long operating period. Therefore, in this paper, we have proposed a signal transport system with a high reliability in an underwater sensor array system composed of magnetic and acoustic sensors. In this system, the nodes for signal transport are connected dually each other with single-hop construction and a magnetic sensor is connected to a couple of neighboring nodes. This enables the output signal to transport from a node to the next node and the next but one node. Also, the signal from a magnetic sensor can be transported to two nodes at the same time. Thus, the system with this construction makes possible to transport sensor data to another node which works normally when a transport node or cable have some faults and will operate normally although it happens some problems in a few signal transport nodes and connection cables.