• Title/Summary/Keyword: 양전자방출촬영

Search Result 129, Processing Time 0.026 seconds

Optimization of Light Guide Thickness for Optimal Flood Image Acquisition of a 14 × 14 Scintillation Pixel Array (14 × 14 섬광 픽셀 배열의 최적의 평면 영상 획득을 위한 광가이드 두께 최적화)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.365-371
    • /
    • 2022
  • In order to obtain excellent spatial resolution in the PET detector, when the detector module is designed using very small scintillation pixels, overlap occurs at the edges and corners of the scintillation pixel array in the flood image. By using a light guide, the occurrence of overlap can be reduced. In this study, after using a scintillator of 0.8 mm × 0.8 mm × 20 mm to form a 14 × 14 array, 3 mm × 3 mm SiPM pixels are combined with 4 × 4 photosensor to reduce the occurrence of overlap. The optimal thickness of the light guide used for this purpose was derived. Quantitative evaluation was performed based on scintillation pixel images of edges and corners where overlap occurs mainly in the acquired flood image. Quantitative evaluation was calculated through the interval and full width at half maximum between scintillation pixel images, and when a light guide with a thickness of 2 mm was used, the best image was obtained with a k value of 2.60. In addition, as a result of measuring the energy resolution through the energy spectrum, the light guide with a thickness of 2 mm showed the best result at 28.5%. If a 2 mm light guide is used, it is considered that the best flood image and energy resolution with minimal overlap can be obtained.

Diagnostic Accuracy of Imaging Study and the Impact of Clinical Risk Factors on the Presence of Residual Tumor Following Unplanned Excision of Soft Tissue Sarcomas (악성 연부조직 종양에 대한 무계획적 절제술 후 잔여 종양의 영상학적 진단의 정확성과 임상적 위험인자)

  • Oh, Eunsun;Seo, Sung Wook;Jeong, Jeonghwan
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.2
    • /
    • pp.150-156
    • /
    • 2019
  • Purpose: This study examined the diagnostic accuracy of an imaging study to find the factors that affect the presence of residual tumors after an unplanned excision of sarcomas. Materials and Methods: Ninety-eight patients, who underwent a re-excision after unplanned surgery between January 2008 and December 2014, were enrolled in this study. Magnetic resonance imaging (MRI) was performed before reoperation in all patients. Positron emission tomography (PET)-computed tomography was performed on 54 patients. A wide re-excision and histology diagnosis were performed in all cases. The clinical variables were evaluated using univariate logistic regression and multivariate logistic regression. Results: The presence of a deep-seated tumor increases the risk of remnant tumors (odds ratio: 3.21, p=0.02, 95% confidence interval: 1.25-8.30). The sensitivity for detecting residual tumors is high in MRI (sensitivity 0.79). Conclusion: Deep-seated tumors have a significantly higher risk of remnant tumors. Because the negative predictive value of MRI and PET scans is very low, reoperation should be performed regardless of a negative result.

Design a Four Layer Depth-Encoding Detector Using Quasi-Block Scintillator for High Resolution and Sensitivity (고분해능 및 고민감도를 위한 준 블록 섬광체를 사용한 네 층의 반응 깊이 측정 검출기 설계)

  • Seung-Jae Lee;Byungdu Jo
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • To achieve high resolution and sensitivity of positron emission tomography (PET) for small animals, the detector is constructed using very thin and long scintillation pixels. Due to the structure of these scintillation pixels, spatial resolution deterioration occurs outside the system's field of view. To solve this problem, we designed a detector that could improve spatial resolution by measuring the interaction depth and improve sensitivity by using a quasi-block scintillator. A quasi-block scintillator size of 12.6 mm x 12.6 mm x 3 mm was arranged in four layers, and optical sensors were placed on all sides to collect light generated by the interaction between gamma rays and the scintillator. DETECT2000 simulation was performed to evaluate the performance of the designed detector. Flood images were acquired by generating gamma-ray events at 1 mm intervals from 1.3 mm to 11.3 mm within the scintillator of each layer. The spatial resolution and peak-to-peak distance for each location were measured in an 11 x 11 array of flood images. The average measured spatial resolution was 0.25 mm, and the average distance between peaks was 1.0 mm. Through this, it was confirmed that all locations were separated from each other. In addition, because the light signals of all layers were measured separately from each other, the layer of the scintillator that interacted with the gamma rays could be completely separated. When the designed detector is used as a detector in a PET system for small animals, it is considered that excellent spatial resolution and sensitivity can be achieved and image quality can be improved.

Change of FDG Uptake According to Radiation Dose on Squamous Cell Carcinoma of the Head and Neck (두경부종양에서 방사선조사량에 타른 FDG-PET의 변화양상)

  • Lee Sang-wook;Kim Jae-Seung;Im Ki Chun;Ryu Jin Sook;Lee Hee Kwan;Kim Jong Hoon;Ahn Seung Do;Shin Seong Soo;Yoon Sang Min;Song Siyeol;Park Jin-hong;Moon Dae Hyuk;Choi Eun Kyung
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.98-105
    • /
    • 2004
  • Purpose : To evaluate whether positron omission tomography (PET) with 2-[F-18]fluoro-2-deoxy-D-giucose(FDG) can be used to predict of early response to definitive aim radlotherapy (RT) in squamous cell carcinoma of the head and neck using response rate and locoreglonal control as study endpoints. Materials and Methods : Twenty-two patients with head and neck cancer underwent a FDG-PET study before RT, after a flrst dose of 45 Gy, and after a second dose on more 4han 70 Gy. Standard uptake value (SUV) was calculated for primary tumor (n=22) and neck lymph node (n:10). Attenuation corrected PET scans acquired 60 min after tracer injection were used for evaluation of FDG uptake In tumors. A quantitative FDG uptake index was expressed as Suvlean (corrected for iean body mass). The follow-up time was at least 5 months (range S-1 S months). Results : A total of 22 primary tumors and 10 metastatic lymph nodes were analyzed In FDG-PET. In the first PET study the mean SUVlean the primary tumors and nodes were 5.4 (SD, 2.5) and 4.6 (SD, 2.3), respectively. In the second PET, study peformed after 46 Gy RT the mean SUV in primary tumor and node decreased to 2.9 (SD, 1.9, p<0.001) and 1.7 (SD, 1.3) respectively. in the third PET study peformed at the full dose (more than 70 Gy), RT the mean SUV In the primary tumors and nodes decreased to 2.3 (SD, 1.5, p<0.001) and 1.5 (SD, 1 .1) respectively. Conclusions: FDG uptake In tumors showed a significant decrease after the 45 Gy and more than 70 Gy of RT for squamous cell carcinoma of the head and neck. Reduction of metabolic activity after 46 Gy of radiotherapy Is closely correlated with radiation response.

Factors Influencing the Activation of Brown Adipose Tissue in 18F-FDG PET/CT in National Cancer Center (양전자방출단층촬영 시 갈색지방조직 활성화에 영향을 미치는 요인 분석)

  • You, Yeon Wook;Lee, Chung Wun;Jung, Jae Hoon;Kim, Yun Cheol;Lee, Dong Eun;Park, So Hyeon;Kim, Tae-Sung
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • Purpose Brown fat, or brown adipose tissue (BAT), is involved in non-shivering thermogenesis and creates heat through glucose metabolism. BAT activation occurs stochastically by internal factors such as age, sex, and body mass index (BMI) and external factors such as temperature and environment. In this study, as a retrospective, electronic medical record (EMR) observation study, statistical analysis is conducted to confirm BAT activation and various factors. Materials and Methods From January 2018 to December 2019, EMR of patients who underwent PET/CT scan at the National Cancer Center for two years were collected, a total of 9155 patients were extracted, and 13442 case data including duplicate scan were targeted. After performing a univariable logistic regression analysis to determine whether BAT activation is affected by the environment (outdoor temperature) and the patient's condition (BMI, cancer type, sex, and age), A multivariable regression model that affects BAT activation was finally analyzed by selecting univariable factors with P<0.1. Results BAT activation occurred in 93 cases (0.7%). According to the results of univariable logistic regression analysis, the likelihood of BAT activation was increased in patients under 50 years old (P<0.001), in females (P<0.001), in lower outdoor temperature below 14.5℃ (P<0.001), in lower BMI (P<0.001) and in patients who had a injection before 12:30 PM (P<0.001). It decreased in higher BMI (P<0.001) and in patients diagnosed with lung cancer (P<0.05) In multivariable results, BAT activation was significantly increased in patients under 50 years (P<0.001), in females (P<0.001) and in lower outdoor temperature below 14.5℃ (P<0.001). It was significantly decreased in higher BMI (P<0.05). Conclusion A retrospective study of factors affecting BAT activation in patients who underwent PET/CT scan for 2 years at the National Cancer Center was conducted. The results confirmed that BAT was significantly activated in normal-weight women under 50 years old who underwent PET/CT scan in weather with an outdoor temperature of less than 14.5℃. Based on this result, the patient applied to the factor can be identified in advance, and it is thought that it will help to reduce BAT activation through several studies in the future.

A Case of Complete Remission after Concurrent Chemoradiotherapy for Esophageal Squamous cell Carcinoma with Solitary Bone Metastasis (고립성 골 전이를 동반한 식도편평세포암에서 동시 항암화학방사선 요법 후 완전관해를 보인 1례)

  • Woo Jin Lee;Hoon Jai Chun;Ye Ji Kim;Sun Young Kim;Min Ho Seo;Hyuk Soon Choi;Eun Sun Kim;Bora Keum;Yoon Tae Jeen;Hong Sik Lee;Soon Ho Um;Chang Duck Kim;Ho Sang Ryu
    • Journal of Digestive Cancer Research
    • /
    • v.1 no.1
    • /
    • pp.53-57
    • /
    • 2013
  • There is no established treatment for esophageal carcinoma with metastasis. For the metastatic esophageal squamous cell carcinoma, chemotherapy or best supportive care according to patient's performance status are accepted as an available treatment. We report a case of complete remission after concurrent chemoradiotherapy for esophageal squamous cell carcinoma with metastatic lesion in 5th thoracic vertebrae. A 57-year-old man with ongoing dysphagia and weight loss was admitted to our hospital. On the endoscopic and radiologic imaging evaluation,the patient was diagnosed as a squamous cell carcinoma of esophagus with solitary metastatic lesion in 5th thoracic vertebrae. The patient was treated with combination chemotherapy (5-fluorouracil (5-FU) and cisplatin) and concurrent radiotherapy for two months to relieve dysphagia. Because metastatic lesion in thoracic vertebrae was located near the primary esophageal tumor, the metastatic lesion could be included within the radiation field. After concurrent chemoradiotherapy, consecutive 4 cycles of chemotherapy had been carried out. Primary esophageal tumor with metastatic lymph nodes and metastatic lesion in 5th thoracic vertebrae disappeared on follow up computed tomography (CT) and positron emission tomography-CT (PET-CT). Follow up endoscopic biopsy revealed no remnant malignant cells at previous primary cancer lesion.

  • PDF

Brain Regions Associated With Anhedonia in Healthy Adults : a PET Correlation Study (정상 성인에서 양전자방출단층촬영을 통해 관찰한 무쾌감증 관련 뇌 영역)

  • Jung, Young-Chul;Seok, Jeong-Ho;Chun, Ji-Won;Park, Hae-Jeong;Lee, Jong-Doo;Kim, Jae-Jin
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.6
    • /
    • pp.438-444
    • /
    • 2005
  • Purpose: Anhedonia has been proposed to be the result of a basic neurophysiologic dysfunction and a vulnerability marker that precede and contribute to the liability of developing schizophrenia. We hypothesized that anhedonia, as a construct reflecting the decreased capacity to experience pleasure, should be associated with decreased positive hedonic affect trait. This study examined the relationship between anhedonia and positive hedonic affect trait and searched for the brain legions which correlate with anhedonia in normal subjects. Materials and Methods: Using $^{18}F$-FDG PET scan, we investigated the brain activity of twenty one subjects during resting state. Questionnaires were administrated after the scan in order to assess the self-rated individual differences in physical/social anhedonia and positive/negative affect traits. Results: Negative correlation between physical anhedonia score and positive affect trait score was significant (Pearson coefficient =-0.440, p<0.05). The subjects physical and social anhedonia scores showed positive correlation with metabolic rates in the cerebellum and negative correlation with metabolic rates in the inferior temporal gyrus and middie frontal gyrus. In addition, the positive affect trait score positively correlated with various areas, most prominent with the inferior temporal gyrus. Conclusion: These results suggest that neural substrates, such as the inferior temporal gyrus and prefrontal-cerebellar circuit, which dysfunction has been proposed to be involved with the cognitive deficits of schizophrenia, may also play a significant role in the liability of affective deficits like anhedonia.

Detection and Measurement of Nuclear Medicine Workers' Internal Radioactive Contamination (핵의학과 종사자의 방사성동위원소 체내오염 측정)

  • Jeong, Gyu-Hwan;Kim, Yong-Jae;Jang, Jeong-Chan;Lee, Jai-Ki
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.123-131
    • /
    • 2009
  • Purpose: We tested a sample of nuclear medicine workers at Korean healthcare institutions for internal contamination with radioactive isotopes, measuring concentrations and evaluating doses of individual exposure. Materials and Methods: The detection and measurement was performed on urine samples collected from 25 nuclear medicine workers at three large hospitals located in Seoul. Urine samples were collected once a week, 100~200 mL samples were gathered up to 6~10 times weekly. A high-purity germanium detector was used to measure gamma radiations in urine samples for the presence of radioactive isotopes. Based on the detection results, we estimated the amounts of intake and committed effective doses using IMBA software. In cases where committed effective doses could not be adequately evaluated with IMBA software, we estimated individual committed effective doses for radionuclides with a very short half life such as $^{99m}Tc$ and $^{123}I$, using the methods recommended by International Atomic Energy Agency. Results: Radionuclides detected through the analysis of urine samples included $^{99m}Tc$, $^{123}I$, $^{131}I$ and $^{201}Tl$, as well as $^{18}F$, a nuclide used in Positron Emission Tomography examinations. The committed effective doses, calculated based on the radionuclide concentrations in urine samples, ranged from 0 to 5 mSv, but were, in the majority of cases, less than 1 mSv. The committed effective dose exceeded 1 mSv in three of the samples, and all three were workers directly handling radioactive sources. No nurses were found to have a committed effective dose in excess of 1 mSv. Conclusions: To improve the accuracy of results, it may be necessary to conduct a long-term study, performed over a time span wide enough to allow the clear determination of the influence of seasonal factors. A larger sample should also help increase the reliability of results. However, as most Korean nuclear medicine workers are currently not necessary to monitored routinely for internal contamination with radionuclides. Notwithstanding, a continuous effort is recommended to reduce any unnecessary exposure to radioactive substances, even if in inconsequential amounts, by regularly surveying workplace environments and frequently monitoring atmospheric concentrations of radionuclides.

  • PDF

Principle and Recent Advances of Neuroactivation Study (신경 활성화 연구의 원리와 최근 동향)

  • Kang, Eun-Joo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.172-180
    • /
    • 2007
  • Among the nuclear medicine imaging methods available today, $H_2^{15}O-PET$ is most widely used by cognitive neuroscientists to examine regional brain function via the measurement of regional cerebral blood flow (rCBF). The short half-life of the radioactively labeled probe, $^{15}O$, often allows repeated measures from the same subjects in many different task conditions. $H_2^{15}O-$ PET, however, has technical limitations relative to other methods of functional neuroimaging, e.g., fMRI, including relatively poor time and spatial resolutions, and, frequently, insufficient statistical power for analysis of individual subjects. However, recent technical developments, such as the 3-D acquisition method provide relatively good image quality with a smaller radioactive dosage, which in turn results in more PET scans from each individual, thus providing sufficient statistical power for the analysis of individual subject's data. Furthermore, the noise free scanner environment $H_2^{15}O$ PET, along with discrete acquisition of data for each task condition, are important advantages of PET over other functional imaging methods regarding studying state-dependent changes in brain activity. This review presents both the limitations and advantages of $^{15}O-PET$, and outlines the design of efficient PET protocols, using examples of recent PET studies both in the normal healthy population, and in the clinical population.

Radioactivation Analysis of Concrete Shielding Wall of Cyclotron Room Using Monte Carlo Simulation (PET 사이클로트론 가동에 따른 콘크리트 차폐벽의 방사화)

  • Jang, Donggun;Lee, Dongyeon;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.335-341
    • /
    • 2017
  • Cyclotron is a device that accelerates positrons or neutrons, and is used as a facility for making radioactive drugs having short half-lives. Such radioactive drugs are used for positron emission tomography (PET), which is a medical apparatus. In order to make radioactive drugs from a cyclotron, a nuclear reaction must occur between accelerated positrons and a target. After the reaction, unncessary neutrons are produced. In the present study, radioactivation generated from the collisions between the concrete shielding wall and the positrons and neutrons produced from the cyclotron is investigated. We tracked radioactivated radioactive isotopes by conducting experiments using FLUKA, a type of Monte Carlo simulation. The properties of the concrete shielding wall were comparatively analyzed using materials containing impurities at ppm level and materials that do not contain impurities. The generated radioactivated nuclear species were comparatively analyzed based on the exposure dose affecting human body as a criterion, through RESRAD-Build. The results of experiments showed that the material containing impurities produced a total of 14 radioactive isotopes, and $^{60}Co$(72.50%), $^{134}Cs$(16.75%), $^{54}Mn$(5.60%), $^{152}Eu$(4.08%), $^{154}Eu$(1.07%) accounted for 99.9% of the total dose according to the analysis having the exposure dose affecting human body as criterion. The $^{60}Co$ nuclear species showed the greatest risk of radiation exposure. The material that did not contain impurities produced a total of five nuclear species. Among the five nuclear species, 54Mn accounted for 99.9% of the exposure dose. There is a possibility that Cobalt can be generated by inducive nuclear reaction of positrons through the radioactivation process of $^{56}Fe$ instead of impurities. However, there was no radioactivation because only few positrons reached the concrete wall. The results of comparative analysis on exposure dose with respect to the presence of impurities indicated that the presence of impurities caused approximately 98% higher exposure dose. From this result, the main cause of radioactivation was identified as the small ppm-level amount of impurities.