• Title/Summary/Keyword: 양적데이터

Search Result 282, Processing Time 0.023 seconds

Smart Factory Policy Measures for Promoting Manufacturing Innovation (제조혁신 촉진을 위한 스마트공장 정책방안)

  • Park, Jaesung James;Kang, Jae Won
    • Korean small business review
    • /
    • v.42 no.2
    • /
    • pp.117-137
    • /
    • 2020
  • We examine the current status of smart factory deployment and diffusion programs in Korea, and seek to promote manufacturing innovation from the perspective of SMEs. The main conclusions of this paper are as follows. First, without additional market creation and supply chain improvement, smart factories are unlikely to raise profitability leading to overinvestment. Second, new business models need to connect "manufacturing process efficiency" with "R&D" and "marketing" in value chain in smart factories. Third, when introducing smart factories, we need to focus on the areas where process-embedded technology is directly linked to corporate competitiveness. Based on the modularity-maturity matrix (Pisano and Shih, 2012) and the examples of U.S. Manufacturing Innovation Institute (MII), we establish the new smart factory deployment policy measures as follows. First, we shift our smart factory strategy from quantitative expansion to qualitative upgrading. Second, we promote by each sector the formation of industrial commons that help SMEs to jointly develop R&D, exchange standardized data and practices, and facilitate supplier-led procurement system. Third, to implement new technology and business models, we encourage partnerships, collaborations, and M&As between conventional SMEs and start-ups and business ventures. Fourth, the whole deployment process of smart factories is indexed in detail to identify the problems and provide appropriate solutions.

Three Newspapers Research from The Perspective of Disability : Focusing on The Types of Disabilities on The Disabled Person Welfare Law (3개 신문사 기사에 나타난 장애관 연구 : 장애인복지법상 장애 종류를 중심으로)

  • Lim, Ok-Hee;Cho, Won-Il
    • Journal of Korea Entertainment Industry Association
    • /
    • v.14 no.7
    • /
    • pp.487-500
    • /
    • 2020
  • This research analyzed articles about the disability under the 「The Disabled Person Welfare Law」 in a major daily newspaper. A total of 7,684 articles on disability were collected from homepages of the three newspapers , , and . Through network text analysis and content analysis, we considered about "The perspective of Disability" based on "Multiple Disability Model". As a result of this research, when comparing individual models versus social models, individual models have a higher rate 64.31% than social models 35.69%. According to the newspapers, the major perception of Disability is a traditional individual model, which means disability must be solved by individuals. In addition, due to low social and institutional supports, the public's attention and consideration required for the disabled, socially weak people. This research implied that despite the changing times of looking at disability, three newspapers are still staying in the traditional paradigm. Therefore, It is required that viewing a disability from the perspective on disabled people, and a mature awareness that recognizes the diversity of individual needs. The significance of this study can be found in the fact that no attempt has been made to treat the disability perspectivec in newspaper articles as quantitative and qualitative data.

The Effects of Socioscientific Issue (SSI)-Based Instruction on Underachieving 9th-Grade Students: Achievement, Attitudes, and Scientific Participation and Lifelong Learning Competency (과학기술 관련 사회쟁점(SSI) 기반 수업이 중학교 3학년 과학 학습부진 학생의 기초 학업성취도, 과학학습에 대한 태도 및 과학적 참여와 평생학습 역량에 미치는 효과)

  • Jin-Kyong Hur;Nam-Hwa Kang
    • Journal of Science Education
    • /
    • v.47 no.1
    • /
    • pp.11-23
    • /
    • 2023
  • In this study, we examined the effect of socioscientific issue (SSI) based science lessons on underachieving 9th-grade students. A total of seven lessons centered on two SSIs related to the national science curriculum were developed and implemented during the first semester of 2021. Data were collected from 185 9th-grade students in one middle school in a mid-sized city of South Korea. Among them, 37 were identified as achieving far below the standards (underachieving students hereafter). Quantitative data were collected from pre- and post-tests on basic science content and attitudes and competency measures. To supplement quantitative data, lesson observation notes were recorded, and student interviews with a selected number of students were conducted. The analysis of quantitative data was conducted through the Wilcoxon Signed Rank Test and paired t-tests. Qualitative data were analyzed to find reasons for changing attitudes. The findings showed that the SSI-based lessons were more effective on underachieving students than the others in enhancing basic academic achievement, while there was no significant effect on all in attitudes and competency. Lesson observation data showed that underachieving students were more engaged in SSI-based lessons than before. Student interviews demonstrated several reasons why they were engaged, suggesting the aspects of SSI-based lessons that facilitated underachieving students' learning. Further research topics are suggested.

Analysis of public library book loan demand according to weather conditions using machine learning (머신러닝을 활용한 기상조건에 따른 공공도서관 도서대출 수요분석)

  • Oh, Min-Ki;Kim, Keun-Wook;Shin, Se-Young;Lee, Jin-Myeong;Jang, Won-Jun
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.41-52
    • /
    • 2022
  • Although domestic public libraries achieved quantitative growth based on the 1st and 2nd comprehensive library development plans, there were some qualitative shortcomings, and various studies have been conducted to improve them. Most of the preceding studies have limitations in that they are limited to social and economic factors and statistical analysis. Therefore, in this study, by applying the spatiotemporal concept to quantitatively calculate the decrease in public library loan demand due to rainfall and heatwave, by clustering areas with high demand for book loan due to weather changes and areas where it is not, factors inside and outside public libraries and After the combination, changes in public library loan demand according to weather changes were analyzed. As a result of the analysis, there was a difference in the decrease due to the weather for each public library, and it was found that there were some differences depending on the characteristics and spatial location of the public library. Also, when the temperature was over 35℃, the decrease in book loan demand increased significantly. As internal factors, the number of seats, the number of books, and area were derived. As external factors, the public library access ramp, cafe, reading room, floating population in their teens, and floating population of women in their 30s/40s were analyzed as important variables. The results of this analysis are judged to contribute to the establishment of policies to promote the use of public libraries in consideration of the weather in a specific season, and also suggested limitations of the study.

A study about the effects of online commerce on the local retail commercial area (온라인 거래의 증가가 지역 소매 상권에 미치는 영향에 관한 연구)

  • Lee, Kangbae
    • Economic Analysis
    • /
    • v.25 no.2
    • /
    • pp.54-95
    • /
    • 2019
  • The purpose of this study is to analyze quantitatively and qualitatively the effects of the increase in online shopping and its effects on real-world commercial outlets. The empirical analysis of this study is based on the results of "Census on Establishments" and "Online Shopping Survey" that cover 15 years, from 2002 to 2016. According to the results of this study, the increase in the number of online transactions affects the decrease in the number of stores in the real-world retail sector. However, non-specialized large stores and chain convenience stores showed an increase in the number of stores. In addition, the number of F&B stores increased the most in line with the increase in online transactions. This is because the increase in online transactions and in internet users led to the use of more delivery applications and the introduction of popular places on blogs or through social media. Street-level rents for medium and large-sized locations increased. In other words, it is seen that the demand for differentiated real-world stores that provide a good user experience increases, even though online transactions also increase. These results suggest that real-world stores should provide good user experiences in their physical locations with a certain size and assortment of goods.

Analysis and suggestion of research trends related to NLL -Focused on academic papers from 1998 to 2023- (북방한계선(Northern Limit Line : NLL)관련 연구 경향 분석 및 제언 -1998년~2023년 학술논문을 중심으로-)

  • Hyeon-Sik Kim;Jeong-Hoon Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.25-31
    • /
    • 2023
  • The dispute over the Northern Limit Line in the West Sea has been sharply opposed since the U.N. commander set it in August 1953 with the aim of preventing accidental armed conflict between the two Koreas in the waters of the Korean Peninsula. In 2022, for the first time since the division, North Korea made a missile provocation beyond the NLL. The purpose of this study is to identify how the research on the NLL, which is under way by North Korea's actual provocation, has been conducted and to suggest a direction to proceed. This study examined the trend of research using a total of five academic information DBs, including RISS and Scholar, focusing on academic papers studied on NLL from 1998 to 2023. As a result of examining the current status of each year, field, and research method, significant differences in research volume were identified according to the government's relationship with North Korea, and the research field had the most introduction of the concept of NLL and historical background, confirming the need to expand to more diverse fields to have international legal justification and justification for the NLL, considering the changing international environment according to the logic of power. In terms of final research methods, most of them were literature studies, so the need for quantitative research using interviews, surveys, and big data was also found. It is hoped that the analysis results of this paper will play a positive role in setting the research direction for the international response of the NLL in the future amid the interests of the international political environment that is still ongoing.

Adaptation of Deep Learning Image Reconstruction for Pediatric Head CT: A Focus on the Image Quality (소아용 두부 컴퓨터단층촬영에서 딥러닝 영상 재구성 적용: 영상 품질에 대한 고찰)

  • Nim Lee;Hyun-Hae Cho;So Mi Lee;Sun Kyoung You
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.240-252
    • /
    • 2023
  • Purpose To assess the effect of deep learning image reconstruction (DLIR) for head CT in pediatric patients. Materials and Methods We collected 126 pediatric head CT images, which were reconstructed using filtered back projection, iterative reconstruction using adaptive statistical iterative reconstruction (ASiR)-V, and all three levels of DLIR (TrueFidelity; GE Healthcare). Each image set group was divided into four subgroups according to the patients' ages. Clinical and dose-related data were reviewed. Quantitative parameters, including the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and qualitative parameters, including noise, gray matter-white matter (GM-WM) differentiation, sharpness, artifact, acceptability, and unfamiliar texture change were evaluated and compared. Results The SNR and CNR of each level in each age group increased among strength levels of DLIR. High-level DLIR showed a significantly improved SNR and CNR (p < 0.05). Sequential reduction of noise, improvement of GM-WM differentiation, and improvement of sharpness was noted among strength levels of DLIR. Those of high-level DLIR showed a similar value as that with ASiR-V. Artifact and acceptability did not show a significant difference among the adapted levels of DLIR. Conclusion Adaptation of high-level DLIR for the pediatric head CT can significantly reduce image noise. Modification is needed while processing artifacts.

Minimum Wage and Productivity: Analysis of Manufacturing Industry in Korea (최저임금과 생산성: 우리나라 제조업의 사례)

  • Kim, Kyoo Il;Ryuk, Seung Whan
    • Economic Analysis
    • /
    • v.26 no.1
    • /
    • pp.1-33
    • /
    • 2020
  • Recent discussions about a minimum wage increase (MWI) and its influence on the economy have mainly focused on the quantitative aspects, such as labor costs and employment. However, concerning the qualitative aspects, an MWI could have positive effects by enhancing firm productivity and crowding out marginal firms from the market. These positive effects of an MWI can offset, to some extent, its potential negative effects - increasing labor costs and decreasing employment, among others. In this regard we empirically examine the impact of an MWI on firm productivity (total factor productivity). Using firm level panel data from the manufacturing industry in Korea, we calculate the influence rates of a minimum wage by sector and by firm size (number of workers), and analyze its effects on firm productivity. In particular, the production functions of the firms are estimated by taking into account endogeneity among the input factors, in order to resolve the drawbacks of existing studies - underestimating the capital factor coefficient and overestimating the labor factor coefficient. This study finds that the influences of an MWI on wages, employment, and productivity are substantially different across sectors and firm sizes. While an MWI has shown to have positive influences on productivity growth in the manufacturing industry as a whole, each sector demonstrates a different direction of effect, and the degree of productivity change also varies by sector. The impacts of an MWI on firm productivity are generally estimated to be more negative for smaller firms, but in some sectors the effects are found to be positive. In addition, the wage increases resulting from an MWI seem to cause a productivity enhancement across all sectors in the manufacturing industry. The policy implications of this study are as follows. Considering the empirical findings that an MWI causes an increase in productivity in many sectors of the manufacturing industry, it would be desirable to take into consideration not only the negative side effects but also the positive effects of an MWI when designing any future minimum wage policy. Moreover, in spite of there being a uniform minimum wage, this study finds that the diverse influence rates of a minimum wage across firms have different impacts on wages, employment, and productivity across sectors or firm size. This finding could be conducive to discussions about differentiation among minimum wage schemes by sector or firm size.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

School Experiences and the Next Gate Path : An analysis of Univ. Student activity log (대학생의 학창경험이 사회 진출에 미치는 영향: 대학생활 활동 로그분석을 중심으로)

  • YI, EUNJU;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.149-171
    • /
    • 2020
  • The period at university is to make decision about getting an actual job. As our society develops rapidly and highly, jobs are diversified, subdivided, and specialized, and students' job preparation period is also getting longer and longer. This study analyzed the log data of college students to see how the various activities that college students experience inside and outside of school might have influences on employment. For this experiment, students' various activities were systematically classified, recorded as an activity data and were divided into six core competencies (Job reinforcement competency, Leadership & teamwork competency, Globalization competency, Organizational commitment competency, Job exploration competency, and Autonomous implementation competency). The effect of the six competency levels on the employment status (employed group, unemployed group) was analyzed. As a result of the analysis, it was confirmed that the difference in level between the employed group and the unemployed group was significant for all of the six competencies, so it was possible to infer that the activities at the school are significant for employment. Next, in order to analyze the impact of the six competencies on the qualitative performance of employment, we had ANOVA analysis after dividing the each competency level into 2 groups (low and high group), and creating 6 groups by the range of first annual salary. Students with high levels of globalization capability, job search capability, and autonomous implementation capability were also found to belong to a higher annual salary group. The theoretical contributions of this study are as follows. First, it connects the competencies that can be extracted from the school experience with the competencies in the Human Resource Management field and adds job search competencies and autonomous implementation competencies which are required for university students to have their own successful career & life. Second, we have conducted this analysis with the competency data measured form actual activity and result data collected from the interview and research. Third, it analyzed not only quantitative performance (employment rate) but also qualitative performance (annual salary level). The practical use of this study is as follows. First, it can be a guide when establishing career development plans for college students. It is necessary to prepare for a job that can express one's strengths based on an analysis of the world of work and job, rather than having a no-strategy, unbalanced, or accumulating excessive specifications competition. Second, the person in charge of experience design for college students, at an organizations such as schools, businesses, local governments, and governments, can refer to the six competencies suggested in this study to for the user-useful experiences design that may motivate more participation. By doing so, one event may bring mutual benefits for both event designers and students. Third, in the era of digital transformation, the government's policy manager who envisions the balanced development of the country can make a policy in the direction of achieving the curiosity and energy of college students together with the balanced development of the country. A lot of manpower is required to start up novel platform services that have not existed before or to digitize existing analog products, services and corporate culture. The activities of current digital-generation-college-students are not only catalysts in all industries, but also for very benefit and necessary for college students by themselves for their own successful career development.