• Title/Summary/Keyword: 야금

Search Result 3,562, Processing Time 0.032 seconds

Applications of Nanomanipulator in Nanowires (나노메니퓰레이터를 이용한 나노선의 특성평가)

  • Yoon, Sang-Won;Seo, Jong-Hyun;Ahn, Jae-Pyoung;Seong, Tae-Yeon;Lee, Kon-Bae
    • Journal of Powder Materials
    • /
    • v.16 no.2
    • /
    • pp.138-145
    • /
    • 2009
  • The combination of focused ion beam (FIB) and 4 point probe nanomanipulator could make various nano manufacturing and electrical measurements possible. In this study, we manufactured individual ZnO nanowire devices and measured those electrical properties. In addition, tensile experiments of metallic Au and Pd nanowires was performed by the same directional alignment of two nanomanipulators and a nanowire. It was confirmed from I-V curves that Ohmic contact is formed between electrodes and nanomanipulators, which is able to directly measure the electrical properties of a nanowire itself. In the mechanical tensile test, Au and Pd nanowires showed a totally different fracture behavior except the realignment from <110> to <002>. The deformation until the fracture was governed by twin for Au and by slip for Pd nanowires, respectively. The crystallographic relationship and fracture mechanism was discussed by TEM observations.

Mechanical Property Improvement of the H13 Tool Steel Sculptures Built by Metal 3D Printing Process via Optimum Conditions (금속 3D 프린팅 공정 최적화를 통한 H13 공구강 조형체의 기계적 특성 향상)

  • Yun, Jaecheol;Choe, Jungho;Lee, Haengna;Kim, Ki-Bong;Yang, Sangsun;Yang, Dong-Yeol;Kim, Yong-Jin;Lee, Chang-Woo;Yu, Ji-Hun
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.195-201
    • /
    • 2017
  • In this study, H13 tool steel sculptures are built by a metal 3D printing process at various laser scan speeds. The properties of commercial H13 tool steel powders are confirmed for the metal 3D printing process used: powder bed fusion (PBF), which is a selective laser melting (SLM) process. Commercial H13 powder has an excellent flowability of 16.68 s/50 g with a Hausner ratio of 1.25 and a density of $7.68g/cm^3$. The sculptures are built with dimensions of $10{\times}10{\times}10mm^3$ in size using commercial H13 tool steel powder. The density measured by the Archimedes method is $7.64g/cm^3$, similar to the powder density of $7.68g/cm^3$. The hardness is measured by Rockwell hardness equipment 5 times to obtain a mean value of 54.28 HRC. The optimum process conditions in order to build the sculptures are a laser power of 90 W, a layer thickness of $25{\mu}m$, an overlap of 30%, and a laser scan speed of 200 mm/s.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Application of Gamma Ray Densitometry in Powder Metallurgy

  • Schileper, Georg
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.07a
    • /
    • pp.25-37
    • /
    • 2002
  • The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.

  • PDF

Formation of the $2^{nd}$ Phases in Spray Cast Al-25Si-(Fe,V) Alloy (분무주조 A1-25Si-(Fe,V) 합금에서의 2 차상 형성거동)

  • 박우진;이언식;안상호
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.16-16
    • /
    • 2000
  • 분무주조법으로 제조된 Al-25Si-(Fe,V) 합금빌렛의 미세조직을 광학현미경, 주사전자현미경, 투과전자현미경으로 분석하였으며, 빌렛내에서 관찰되는 2차상의 형성거동을 정확히 분석하기 위해 over-sprayed 분말의 미세조직을 분무주조 빌렛과 함께 관찰하였다. 먼저 분무주조 빌렛을 표면으로부터 중심부까지 관찰한 결과, 분무주조 빌렛의 미세조직은 표면부 10mm 가량을 제외하고는 매우 균일한 미세조직을 보여주었다. 이에 본 연구에서는 분무주조 빌렛의 표면부와 중심부, 그리고 over-sprayed 분말조직으로 구분하여 각각에서 관찰되는 2차상을 관찰하였으며, 이를 바탕으로 분무주조 빌렛내에 형성된 2차상의 형성기구를 규명하고자 하였다. Over-sprayed 분말의 미세조직은 기지조직내에 균일하게 분포된 침상의 $\delta$-AlFeSi 상과 각형의 Si 입자로 구성되어 있었다. 반면, 분무주조 빌렛의 경우, 그 중심부에서는 기자조직내에 균일하게 분포된 막대형의 $\beta$-AlFeSi과 부정형의 조대한 Si입자가 관찰되었으며, 표면부에서는 부정형의 Si 입자와 함께 막대형의 $\beta$-AlFeSi/$\delta$-AlFeSi 복합상이 관찰되었다. 특히, 빌렛 표면부의 $\beta$-AlFeSi 상과 $\delta$-AlFeSi 상간에는 일정한 방위관계가 존재하였으며, 이러한 결과는 분무주조 빌렛내에 분포된 $\beta$-AlFeSi상들이 분무액적내에 형성된 준안정 $\delta$-AlFeSi 상으로부터 상분해되어 형성되었음을 제시한다. 이상의 분무주조 조직과 over-sprayed 분말의 미세조직으로부터 분무주조 빌렛의 최종 주조조직은 반응고상태의 분무액적 조직에 의해 지배됨을 알 수 있다.r plate)의 단면 미세조직 사진으로써 모재부와 오버레이충을 함께 보여주고 있다. 모재와 오버레이 충간의 경계면은 모재 일부가 용융된 후 웅고하면서 형성됨으로 인해서 도금이나 용사층과는 달리 매우 견고하게 결합되어 있다. 따라서 계면부의 탈락이라는 문 제점은 거의 없어 심한 응력을 받는 기계구조물 및 부품에도 본 기술은 널리 적용되고 있다. 그리고 사진 1에서 알 수 있는 바와 같이 모재와는 전혀 상이한 재료를 자유로이 선택하여 표면 유효층 일부만 오버레이시키며I 주조 및 단조가 불가능한 재료까지도 표면부에 오버레이 시킴으로 서 부품 및 설비의 제조에 있어 재료비의 절감과 제품의 수명이 획기적으로 개선될 수 있다. 그리고 최근에는 도금 빛 용사 둥과 같은 표면처리를 할 경우임의 소재 표면에 도금 및 용 사에 용이한 재료를 오버레이용접시킨 후 표면처리를 함으로써 보다 고품질의 표면층을 얻기위한 시도가 이루어지고 있다. 따라서 국내, 외의 오버레이 용접기술의 적용현황 및 대표적인 적용사례, 오버레이 용접기술 및 용접재료의 개발현황 둥을 중심으로 살펴봄으로서 아직 국내에서는 널리 알려지지 않은 본 기 술의 활용을 넓이고자 한다. within minimum time from beginning of the shutdown.및 12.36%, $101{\sim}200$일의 경우 12.78% 및 12.44%, 201일 이상의 경우 13.17% 및 11.30%로 201일 이상의 유기의 경우에만 대조구와 삭제 구간에 유의적인(p<0.05) 차이를 나타내었다.는 담수(淡水)에서 10%o의 해수(海水)로 이주된지 14일(日) 이후에 신장(腎臟)에서 수축된 것으로 나타났다. 30%o의 해수(海水)에 적응(適應)된 틸라피아의 평균 신사구체(腎絲球體)의 면적은 담수(淡水)에 적응된 개체의 면적보다 유의성있게 나타났다. 해수(海水)에 적응(適應)된 틸라피아의 신단위(腎單位)의 사

  • PDF

The Microstructural Properties Change Owing to the Sintering Condition of T42 High Speed Steel Produced by Powder Injection Molding Process (분말 사출 성형법으로 제조된 T42 고속도 공구강의 소결 조건에 따른 조직 특성 변화)

  • Do, Kyoung-Rok;Choi, Sung-Hyun;Kwon, Young-Sam;Cho, Kwon-Koo;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.312-318
    • /
    • 2010
  • High speed steels (HSS) were used as cutting tools and wear parts, because of high strength, wear resistance, and hardness together with an appreciable toughness and fatigue resistance. Conventional manufacturing process for production of components with HSS was used by casting. The powder metallurgy techniques were currently developed due to second phase segregation of conventional process. The powder injection molding method (PIM) was received attention owing to shape without additional processes. The experimental specimens were manufactured with T42 HSS powders (59 vol%) and polymer (41 vol%). The metal powders were prealloyed water-atomised T42 HSS. The green parts were solvent debinded in normal n-Hexane at $60^{\circ}C$ for 24 hours and thermal debinded at $N_2-H_2$ mixed gas atmosphere for 14 hours. Specimens were sintered in $N_2$, $H_2$ gas atmosphere and vacuum condition between 1200 and $1320^{\circ}C$. In result, polymer degradation temperatures about optimum conditions were found at $250^{\circ}C$ and $480^{\circ}C$. After sintering at $N_2$ gas atmosphere, maximum hardness of 310Hv was observed at $1280^{\circ}C$. Fine and well dispersed carbide were observed at this condition. But relative density was under 90%. When sintering at $H_2$ gas atmosphere, relative density was observed to 94.5% at $1200^{\circ}C$. However, the low hardness was obtained due to decarbonization by hydrogen. In case of sintering at the vacuum of $10^{-5}$ torr at temperature of $1240^{\circ}C$, full density and 550Hv hardness were obtained without precipitation of MC and $M_6C$ in grain boundary.

Basic Study on the Recycling of Waste Tungsten Scraps by the Oxidation and Reduction Process (산화·환원법에 의한 폐텅스텐 스크랩의 재활용에 관한 기초연구)

  • Kim, Sang-Uk;Yun, Ji-seok;Kim, Tae-Wook;Cho, Bong-Hwi;Kim, In-Ho;Kim, Sang-Mu;Song, Chang-Bin
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.34-40
    • /
    • 2017
  • This study is carried out to obtain basic data regarding oxidation and reduction reactions, originated on the recycling of waste tungsten hard scraps by oxidation and reduction processes. First, it is estimated that the theoretical Gibbs free energy for the formation reaction of $WO_2$ and $WO_3$ are calculated as ${\Delta}G_{1,000K}=-407.335kJ/mol$ and ${\Delta}G_{1,000K}=-585.679kJ/mol$, from the thermodynamics data reported by Ihsan Barin. In the experiments, the oxidation of pure tungsten rod by oxygen is carried out over a temperature range of $700-1,000^{\circ}C$ for 1 h, and it is possible to conclude that the oxidation reaction can be represented by a relatively linear relationship. Second, the reduction of $WO_2$ and $WO_3$ powder by hydrogen is also calculated from the same thermodynamics data, and it can be found that it was difficult for the reduction reaction to occur at $1,027^{\circ}C$, in the case of $WO_2$, but it can happen for temperatures higher than $1127^{\circ}C$. On the other hand, $WO_3$ reduction reaction occurs at the relatively low temperature of $827^{\circ}C$. Based on these results, the reduction experiments are carried out at a temperature range of $500-1,000^{\circ}C$ for 15 min to 4 h, in the case of $WO_3$ powder, and it is possible to conclude that the reduction at $900^{\circ}C$ for 2h is needed for a perfect reduction reaction.

Effect of Deposition Parameter and Mixing Process of Raw Materials on the Phase and Structure of Ytterbium Silicate Environmental Barrier Coatings by Suspension Plasma Spray Method (서스펜션 플라즈마 스프레이 코팅법으로 제조된 Ytterbium Silicate 환경차폐코팅의 상형성 및 구조에 미치는 증착인자 및 원료혼합 공정의 영향)

  • Ryu, Ho-lim;Choi, Seon-A;Lee, Sung-Min;Han, Yoon-Soo;Choi, Kyun;Nahm, Sahn;Oh, Yoon-Suk
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.437-443
    • /
    • 2017
  • SiC-based composite materials with light weight, high durability, and high-temperature stability have been actively studied for use in aerospace and defense applications. Moreover, environmental barrier coating (EBC) technologies using oxide-based ceramic materials have been studied to prevent chemical deterioration at a high temperature of $1300^{\circ}C$ or higher. In this study, an ytterbium silicate material, which has recently been actively studied as an environmental barrier coating because of its high-temperature chemical stability, is fabricated on a sintered SiC substrate. $Yb_2O_3$ and $SiO_2$ are used as the raw starting materials to form ytterbium disilicate ($Yb_2Si_2O_7$). Suspension plasma spraying is applied as the coating method. The effect of the mixing method on the particle size and distribution, which affect the coating formation behavior, is investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) analysis. It is found that the originally designed compounds are not effectively formed because of the refinement and vaporization of the raw material particles, i.e., $SiO_2$, and the formation of a porous coating structure. By changing the coating parameters such as the deposition distance, it is found that a denser coating structure can be formed at a closer deposition distance.

Sintering Mixtures in the Stage of Establishing Chemical Equilibrium

  • Savitskii, A.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1999.04a
    • /
    • pp.5-5
    • /
    • 1999
  • The Principal deficiency of the existing notion about the sintering-mixtures consists in the fact that almost no attention is focused on the Phenomenon of alloy formation during sintering, its connection with dimensional changes of powder bodies, and no correct ideas on the driving force for the sintering process in the stage of establishing chemical equilibrium in a system are available as well. Another disadvantage of the classical sintering theory is an erroneous conception on the dissolution mechanism of solid in liquid. The two-particle model widely used in the literature to describe the sintering phenomenon in solid state disregards the nature of the neighbouring surrounding particles, the presence of pores between them, and the rise of so called arch effect. In this presentation, new basic scientific principles of the driving forces for the sintering process of a two-component powder body, of a diffusion mechanism of the interaction between solid and liquid phases, of stresses and deformation arising in the diffusion zone have been developed. The major driving force for sintering the mixture from components capable of forming solid solutions and intermetallic compounds is attributed to the alloy formation rather than the reduction of the free surface area until the chemical equilibrium is achieved in a system. The lecture considers a multiparticle model of the mixed powder-body and the nature of its volume changes during solid-state and liquid-phase sintering. It explains the discovered S-and V-type concentration dependencies of the change in the compact volume during solid-state sintering. It is supposed in the literature that the dissolution of solid in liquid is realised due to the removal of atoms from the surface of the solid phase into the melt and then their diffusicn transfer from the solid-liquid interface into the bulk of liquid. It has been shown in our experimental studies that the mechanism of the interaction between two components, one of them being liquid, consist in diffusion of the solvent atoms from the liquid into the solid phase until the concentration of solid solutions or an intermetallic compound in the surface layer enables them to pass into the liquid by means of melting. The lecture discusses peculimities of liquid phase formation in systems with intermediate compounds and the role of the liquid phase in bringing about the exothermic effect. At the frist stage of liquid phase sintering the diffusion of atoms from the melt into the solid causes the powder body to grow. At the second stage the diminution of particles in size as a result of their dissolution in the liquid draws their centres closer to each other and makes the compact to shrink Analytical equations were derived to describe quantitatively the porosity and volume changes of compacts as a result of alloy formation during liquid phase sinteIing. Selection criteria for an additive, its concentration and the temperature regime of sintering to control the density the structure of sintered alloys are given.

  • PDF

Effect of TiCN/WC Ratio on Grain Shape and Grain Growth in the TiCN-WC-Co System (TiCN-WC-Co 계에서 TiCN/WC 비의 변화에 따른 입자모양과 입자 성장)

  • 이보아;강석중;윤덕용;김병기
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.29-29
    • /
    • 2002
  • 공구강 등 산업용 재료로 널리 사용되는 카바이드 계 재료는 입자 크기 및 분포에 따라 기계적 성질이 변화하므로, 이를 제어하고 조절하는 기술에 관하여 많은 연구가 진행되어 왔다. 본 연구에서는 TiCN-WC-Co 복합초경계 에서 소결 공정 및 조성변화에 따른 입자 모양을 관찰하고 이에 따른 업자 성장 거동을 고찰하였다. 일반적으로 입자 조대화 양상과 고상 입자의 모양과는 밀접한 관계가 있다. 각진 입자의 경우에 는 계면이 원자적으로 singular 하여 원자의 홉착이 어렵기 때문에 임계값 이상의 성장 구동력을 받 는 몇몇 입자만 성장하는 비정상 입자 성장이 일어날 수 있다. 반면에 계면이 rough한 퉁큰 엽자의 경우에는 원자 홉착에 필요한 구동력이 존재하지 않아 성장 구동력을 받는 모든 입자들이 성장하기 때문에 정상 입자 성장을 하게 된다. 이와 같이 입자 모양에 따른 입자 성장 거동은 전체 미세구조를 결정하게 되며, 이에 따른 물리 화학적 물성을 변화시킨다. 이러한 입자 성장 원리를 적용하 면 복합초경계 (TiCN-WC-Co)에서도 입자성장이 억제되고 치밀한 소결체를 제조할 수 있을 것이다. 본 실험에서는 평균입도가 각각 0.1, 1.33, 2$\mu\textrm{m}$인 TiCN, WC, Co 분말을 사용하여 $((I00_{-x)}TiCN+_xWC)-30Co$ (wt%) 조성에서 TiCN/WC 비를 변화시키면서 업자 모양과 입자성장 거동을 관찰하였다. 청량된 분말은 WC 초경 볼로 밀렁하고, 건조한 후, 100 mesh 체로 조립화 하였다. 이 분말을 100 MPa의 압력으로 냉간정수압성형 하고 $10^{-2}$ torr의 진공분위기의 graphite f furnace에서 carbon black으로 packing 하여 액상형성 온도 이상에서 소결하였다. 소결된 시편은 경면 연마하여 주사전자현미경으로 미세 조직을 관찰하였다. TiCN-30Co 조성 시편은 corner-round 모양의 입자 모양으로 소결 시간 증가에 따라 빠른 입자 성장을 나타내었다 .(7STiCN+2SWC)-30Co 조성 시변의 경우 일반적으로 보고된 바와 같이 core/shell 구조를 나타내었으며, core는 TiC-rich 상이었고, shell은 (Ti,W)(C,N) 복합 탄화물 상이었다. WC 함량이 중가함에 따라 입자의 corner-round 영역이 증가하였으며 (SOTiCN-SOWC)-30Co 조성 근처에서는 거의 둥근 형태의 입자 모양을 나타내었다. 또한 TiCN - 30Co 조성 시편에 비하여 WC가 첨가된 시펀들은 작은 평균입자크기를 나타내었다. 본 연구의 결과는 shell 영역 조성 변화는 계면에너지 이방성과 기지상 내의 펑형 입자 모양을 변화시키고 나아가 입자 성장 속도 에도 영향을 미친다는 것을 보여준다.

  • PDF