• Title/Summary/Keyword: 액체 입자

Search Result 239, Processing Time 0.029 seconds

Statistical Analysis for Silver Nanoparticle Synthesis Using Ionic Liquid (이온성액체 기반 은 나노입자 합성을 위한 통계적 실험 분석)

  • Lee, Kil Woo;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.77-80
    • /
    • 2018
  • Silver nanoparticles with various sizes were synthesized using ionic liquids. In order to conduct more efficient research, experimental methods and results were analyzed statistically. First, effects of five different parameters including the reaction time, temperature, NaOH concentration, reducing agent and ionic liquid amount on the size of silver particles were investigated. As a result, the effects of time and temperature were negligible. The experimental conditions for the other three factors were then statistically constructed. From XRD analyses, the particles synthesized under all conditions had a pure silver crystal structure. Sizes of the synthesized silver particles were also analyzed by HR-SEM. In the three synthetic conditions, NaOH concentration had the greatest influence on determining the size of silver particles and the reducing agent concentration was relatively minute. Synthesis conditions of silver particles with various sizes were presented by using statistical methods with respect to NaOH and ionic liquids. In addition, the sizes of silver particles according to three experimental conditions were derived by the mixture method.

Solid Circulation Rate in a Viscous Liquid-Solid Circulating Fluidized Bed (점성유체 액/고 순환유동층에서 입자의 순환속도)

  • Hong, Sung Kyu;Jang, Hyung Ryun;Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.706-711
    • /
    • 2016
  • Characteristics of solid circulation rate in the liquid-solid circulating fluidized beds with viscous liquid medium were investigated. Effects of primary and secondary liquid velocities, particle size, liquid viscosity and height of solid particles piled up in the solid recycle device on the solid circulation rate were considered. The solid circulation rate increased with increasing primary and secondary liquid velocities, liquid viscosity and height of solid particles in the downcommer, but it decreased with increasing particle size. The particle rising velocity in the riser decreased with increasing the ratio of $U_{L1}/U_{L2}$ and particle size. The slip velocity of liquid and particle, $U_L/U_S$, decreased with increasing liquid viscosity but it increased with increasing particle size. The values of solid circulation rate were well correlated in terms of operating variables and dimensionless groups.

Synthesis of TiO2 Hollow Microspheres Using Ionic Liquids (이온성액체를 이용한 이산화티타늄 미세중공체 합성)

  • Hong, Kiwon;Yoo, Kyesang
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.340-342
    • /
    • 2011
  • $TiO_2$ hollow microsphere was simply synthesized using various ionic liquids. Shapes and sizes of hollow microspheres were significantly different with the composition of ionic liquids. This is mainly attributed to the interaction between the organic solvent and the ionic liquid at the interface leading to the formation of micropsphere. Among the ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate was the most effective to synthesize the hollow microsphere.

Phase-and Size-Controlled Synthesis of CdSe/ZnS Nanoparticles Using Ionic Liquid (이온성 액체에 의한 CdSe/ZnS 나노입자의 상과 크기제어 합성)

  • Song, Yun-Mi;Jang, Dong-Myung;Park, Kee-Young;Park, Jeung-Hee;Cha, Eun-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Ionic liquids are room-temperature molten salts, composed of organic mostly of organic ions that may undergo almost unlimited structural variation. We approach the new aspects of ionic liquids in applications where the semiconductor nanoparticles used as sensitizers of solar cells. We studied the effects of ionic liquids as capping ligand and/or solvent, on the morphology and phase of the CdSe/ZnS nanoparticles. Colloidal CdSe/ZnS nanoparticles were synthesized using a series of imidazolium ionic liquids; 1-R-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([RMIM][TFSI]), where R = ethyl ([EMIM]), butyl ([BMIM]), hexyl ([HMIM]), octyl ([OMIM]). The average size of nanoparticles was 8~9 nm, and both zinc-blende and wurtzite phase was produced. We also synthesized the nanoparticles using a mixture of trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide ([$P_{6,6,6,14}$][TFSI]) and octadecene (ODE). The CdSe/ZnS nanoparticles have a smaller size (5.5 nm) than that synthesized using imidazolium, and with a controlled phase from zinc-blende to wurtzite by increasing the volume ratio of [$P_{6,6,6,14}$][TFSI]. For the first time, the phase and size control of the CdSe/ZnS nanoparticles was successfully demonstrated using those ionic liquids.

Simulation of Electrorheological Fluids by the Extended Maxwell-Wagner Polarization Model with Onsager Theory (Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델에 의한 전기유변 현상 모사)

  • Kim, Young Dae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.480-485
    • /
    • 2020
  • The extended Maxwell-Wagner polarization model is employed to describe the ER behavior of the conducting particle ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. The simulation results show the nonlinear ER behavior (Δτ∝En, n≈1.5) of the conducting particle ER suspensions. The response point, where shear stress reaches steady-state, is the point where stable break-up and rebuild of the chain-like structure of particles reaches. Also, it shows the minimum of shear stress, which corresponds the start-up of random particle configuration. The shear stress reaches plateau as particle volume fraction increases.

Preparation of Ag/TiO2 Particle for Aerobic Benzyl Alcohol Oxidation (Aerobic Benzyl Alcohol Oxidation 반응용 Ag/TiO2 제조)

  • Kim, Chang-Soo;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.663-667
    • /
    • 2013
  • $Ag/TiO_2$ particle was prepared using various ionic liquids by wet impregnation. The properties of the particles were significantly affected by the composition of ionic liquids. This is mainly attributed to different abilities of an ionic liquid to coordinate with the silver particle, leading to various coagulation of silver particles. The catalytic activity of the prepared samples was examined for the aerobic benzyl alcohol oxidation. Among the particles, $Ag/TiO_2$ prepared with 1-octyl-3-methylimidazolium tetrafluoroborate showed the best catalytic performance.

자성나노입자 이동과 변압기 절연유의 절연특성 변화의 상관관계 고찰

  • Lee, Won-Ho;Lee, Sang-Yeop;Lee, Se-Hui;Lee, Jong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.577-577
    • /
    • 2012
  • 자성나노유체(ferrofluid)는 계면활성제로 코팅된 직경 10 nm인 자성나노입자(magnetic nanoparticle)가 바탕액체(물 또는 오일 등)에 분산하고 있는 액체이다. 최근 연구에 의하면 자성나노 유체가 변압기 절연유로 사용될 경우 열전달 및 절연 특성이 향상된다고 보고되고 있다. 또한 자성나노유체에 포함된 자성나노입자는 영구자석 및 전자석 등에 의한 외부 자기장뿐만 아니라, 두 전극 사이에 인가된 전기장에 의한 유도자기장에 영향을 받는다고 한다. 본 연구에서는 두 전극 사이 전압을 1 kV로 인가한 경우에서 광학현미경을 이용한 자성나노입자의 마이크로 채널(microchannel) 내부 이동특성 관측 및 Maxwell 방정식을 이용한 전자기장 수치해석을 수행하였다. 실험 및 해석 결과를 통하여 자성나노유체에 포함된 자성나노입자가 인가된 전기장에 의하여 발생되는 이동특성을 분석하고, 선행연구에서 보고된 절연특성 변화에 관한 상관관계에 대해 고찰하였다. 광학현미경 관측 결과로부터 전기장이 인가되지 않은 경우에 균일하게 분산되어 있는 자성나노입자는 전기장 인가에 따라 발생되는 유도자기장에 의하여 입자 간의 뭉침(agglomeration) 현상과 전극 주위로 이동하려는 성질을 확인하였다. 또한 수치해석 결과로부터 자성나노입자의 존재로 인하여 전극 사이의 전기장 강도와 자속밀도가 증가함을 확인하였으며, 자성나노입자의 이동을 유발하는 유도자기장이 전극 주위에서 큰 것을 파악할 수 있었다. 이와 같은 결과는 자성나노입자가 변압기 절연유에 첨가된 경우우 절연파괴전압이 변화되는 이유를 설명할 수 있는 근거가 된다.

  • PDF

Synthesis of Dodecanethiol-Capped Nanoparticles Using Ionic Liquids (이온성 액체를 이용한 dodecanethiol로 안정화된 금속 나노입자 합성)

  • Lee, Young-Eun;Lee, Seong-Yun;You, Seong-Sik
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.795-801
    • /
    • 2012
  • Nanoparticles have received significant attention because of their unusual characteristics including high surface area to volume ratios. Thiol ligand have been used as stabilizers of metal nanoparticles since Brust et al. They reported the preparation method of ligand capped metal nanoparticles by protecting the nanoparticles with a self-assembled monolayer of dodecanethiolate. In this method, volatile organic compounds (VOCs) were used as sovents. This study was carried out to replace these VOCs with room temperature ionic liquids (RTILs). We used two type of ILs to prepare metal nanoparticles. One is a hydrophobic IL, [BMIM][[$PF_6$] (1-Butyl-3-methylimidazolium hexafluorophosphate) purchased from IL maker, C-Tri from Korea and the other one is a hydrophilic one, [BMIM][Cl] (1-Buthy-3-methylimdazolium chloride) sinthesized by us. In the case of preparing Ag and Au nanoparticles using [BMIM][Cl], we didn't use phase transition reagents and ethanol because it has hydrophilic property and preparing Au, Ag nanoparticles using [BMIM][[$PF_6$] the method is as same as Brust et al.'s except using [BMIM][[$PF_6$] instead of organic solvent because it has hydrophobic property. FT-IR and UV-vis, TEM, TGA analysis have been used in an attempt to determine the particle size and verify functional groups. The particle size obtained from TEM was very similar to those obtained by Brust et al. This is a clear example of ligand capped metal nanoparticles prepared using ionic liquids. And the experimental result demonstrated ionic liquids can act as a highly effective medium for the preparation and stabilization of gold and silver metal nanoparticles.

A Numerical Study on Mixing of Liquid Fuel and Solid Particles in a Fuel Tank (연료탱크내 액체연료와 고체입자의 혼합 수치해석 연구)

  • Kim, Myung-Ho;Ryu, Gyong-Won;Min, Seong-Ki;Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.745-749
    • /
    • 2011
  • Two-dimemsional liquid-solid multiphase fluid dynamics was used to analyze the suspension and mix of liquid fuel and solid particles in fuel tank installed mixing impeller. In this paper, the multiphase flow was modeled using Eulerian Grandular Multiphase model. Experimental measurements of the axial distribution of solids concentration in stirred tanks under 12vol% solid loading were used for comparison with the CFD simulation. Four cases for the impeller location and flow pumping direction also were reviewed under 10.5% solids loading and 700rpm in fuel mix tank. The result of quality of suspension was compared with each cases and the impeller location and operation of mixing fuel tank was established.

  • PDF

A novel time scale of dynamic heterogeneity in a supercooled liquid system

  • Mun, Seok-Jin;Park, Gye-Hyeon;Park, Sang-Won;Jeong, Yeon-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.138-146
    • /
    • 2015
  • 액체 상태의 물질이 매우 급속하게 냉각되면 일반적으로 과냉각액체(supercooled liquid) 상태에 도달한다. 과냉각액체는 더 낮은 온도에서 유리상(glass phase)으로 상전이를 일으킨다고 알려져 있는데, 이때 나타나는 동역학적 불균일성(dynamic heterogeneity)은 상전이를 기술하는데 중요한 역할을 한다. 그러나 일반적인 액체의 상전이를 연구할 때 주로 사용되던 상관함수(correlation function)으로는 이러한 불균일성을 정량적으로 표현하기 어렵기 때문에 동역학적 민감도(dynamic susceptibility)나 multi-time correlation function 등 동역학적 성질(dynamic property)로부터 특징적인 시간 개념 및 거리 개념을 도출하려는 연구가 많이 진행되어 왔다. 본 논문에서는 일반적으로 특징적인 거리 개념을 도출해 내는데 사용되는 4점 밀도 상관함수(four-point density correlation function)인 dynamic susceptibility(${\chi}^4$)가 입자 밀도의 요동(fluctuation)의 상관관계(correlation)가 지속되는 특징적인 시간 개념에 대한 정보 또한 포함하고 있다는 점에 주목하였다. 이에 따라 ${\chi}^4$의 시간에 대한 적분인 ${\tau}_4$를 새롭게 도입하였으며 그 결과로 ${\tau}_4$는 three-time density correlation function으로부터 도출한 ${\tau}_{Dh}$와 같은 축척(scaling)을 가지는 것을 확인하였다. 과냉각액체에 대한 장난감 모형(toy model)의 일종인 "Lennard-Jones potential 하에서 운동하는 서로 다른 두 종류의 입자들"을 연구에 사용하였다.

  • PDF