• Title/Summary/Keyword: 액체의 미립화

Search Result 117, Processing Time 0.025 seconds

Prediction of Flow Rate and Drop Size of Low Viscosity Liquid Through Y-Jet Atomizers (Y-Jet노즐을 통한 저점도 액체의 유량 및 입경예측에 관한 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3377-3385
    • /
    • 1994
  • This paper introduces empirical correlations to obtain the gas/liquid flow rates and the spray drop size of low viscosity liquid injected by Y-jet twin-fluid atomizers. The gas flow rate is well correlated with the gas injection pressure and the mixing point pressure, based on the compressible flow theory. Similarly, the liquid flow rate is determined by the liquid injection pressure and the mixing point pressure, and a simple correlation for the liquid discharge coefficient at the liquid port was deduced from the experimental results. The mixing point pressure, which is one of the essential parameters, was expressed in terms of the gas/liquid flow rate ratio and the mixing port length. Disintegration and atomization mechanisms both within the mixing port and outside the atomizer were carefully re-examined, and a "basic" correlation form representing the mean diameter of drops was proposed. The "basic" correlation was expressed in terms of the mean gas density within the mixing port, gas/liquid mass flow rate ratio and the Weber number. Though the correlation is somewhat complicated, it represents the experimental data within an accuracy of ${\pm}15%$.EX>${\pm}15%$.

Spray Characteristics of Impinging Injectors in Crossflows (횡방향 유동에서 충돌형 분사기의 액체제트 분무 특성)

  • Song, Yoonho;Lee, Woongu;Ahn, Kyubok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.949-952
    • /
    • 2017
  • Spray characteristics of the impinging injectors in subsonic crossflows were experimentally studied and compared with the plain-orifice injectors. By changing the impingement angle (60, 90, 120) which is the same orifice length to diameter ratio (L/d = 5), spray characteristics were investigated. In the view of the top view from the impinging injectors, as the impingement angle increases, the liquid column breakup length in the y-direction was decreased. On the other hand, when the impinging injector is viewed from the side view, the breakup length in the x direction is smaller than the previous plain-orifice injectors, which mean that the atomizing performance of the impingement-type injector is better than that of the single-hole orifice.

  • PDF

A Study on the High-Efficiency Atomisation Molten Materials (PART 2 : A Study on the Mechanism of Liquid Supplying and Film Formation by Applying the Ejector Principle) (Atomize법에 의한 용융소재의 고효율 미세화에 관한 연구(제2보 : 이젝터의 원리를 이용한 액체노즐의 액체공급 및 액막생성 기구와 특성))

  • Oh, J.G.;Cho, I.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.14-23
    • /
    • 1998
  • The negative pressure as much as 10's mmHg is demanded at nozzle inside, in case of atomizing the large density molten materials. by conventional air jet nozzle. In this study, suction type fluid nozzle is designed by applying the ejector principle in order to clarify the air flow of nozzle inside, mechanism of liquid suction and liquid film formation. The results of this experimental study areas follows. Suction force of liquid is magnified by using liquid nozzle, and it is able to supply the liquid stable. Negative pressure at nozzle inside is varied by throttle angle of liquid nozzle, position and outer diameter of air jet nozzle, and have a influence on liquid suction quantity and liquid film formation.

  • PDF

A Study on the Secondary Atomization Characteristics of Liquid Fuel in the Perforated Throttle Valve (다공 스로틀 밸브에서의 액체 연료의 2차 미립화 특성에 관한 연구)

  • Lee, C.S.;Lee, K.H.;Cho, B.O.;Oh, K.S.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.55-62
    • /
    • 1996
  • In a fuel injection engine, atomization of liquid fuel and mixture formation process has influenced(or affected) directly on the engine performance and pollutant emission. In this study, the characteristics of fuel spray and the behaviors of secondary atomization developed at the downstream of the valves were investigated using an image processing method. Solid and perforated valves are chosen in order to evaluate the valve performance in terns of air flow rate, valve opening angle and valve shape. Experimental results clearly indicate that the spray atomization quality can be improved by increasing the perforated rat io and the blockage rat io in the perforated valve, the characteristics of spray atomization is improved by using the perforated valve with high perforated rat io and blockage ratio.

  • PDF

An Experimental Study on Characteristics of Twin Spray Ejected from Two Pre Filming Airblast Atomizer (두 개의 공기충돌형 연료분사장치로부터 분사되는 이중분무특성에 관한 실험적 연구)

  • Park, Seung-Gyu;Han, Jae-Seob;Kim, Yoo;Park, Jung-Bae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.6-6
    • /
    • 1998
  • 항공기용 가스터빈 및 일반적인 산업용 분무시스템에서는 많은 양의 분사액체를 미립화 시키고 시스템의 연속적인 운전과 유지를 편리하게 하기 위하여 여러 개의 분사노즐을 열로 설치하여 동시에 분사하도록 하고 있다. 이렇게 동시에 분사할 경우, 노즐간에 거리가 충분히 크지 않으면 개별적으로 분사된 분무들이 서로 합해져서 하나의 연합된 분무군이 형성된다. 이렇게 Two element에 의해서 형성된 spray는 공급압력이 증가함에 따라 관성력이 증가하게 되어 중심부분에서 액막 혹은 액적상태로서 충돌이 발생하여 복잡한 분무특성을 가질 것이다. 따라서, 연합된 분무군의 특성을 이해하는 것은 응용의 측면에서 매우 중요하다고 할 수 있다.

  • PDF

An Analysis Results of Agricultural Ultrasonic Twin-fluid Nozzle (농업용 액체 분무용 초음파 분사 시스템 해석)

  • Chung, Jin-Do
    • Journal of ILASS-Korea
    • /
    • v.8 no.3
    • /
    • pp.1-9
    • /
    • 2003
  • The objective of this study is to compare atomization characteristics for differently made an ultrasonic twin-fluid nozzle. A spray system, an ultrasonic system, and three different type(Nozzle type, Tube type. Conventional type)are made and compared experimental and numerical results. In this investigation, the measurement and numerical analysis of spray droplet are to analyze the effects of ultrasonic energy on the agricultural atomization spray system in order to protection of dispersion droplets. It is clarified that ultrasonic energy forcing into a nozzle is valid to obtain atomization enchancement. As the result of comparing the experimental and numerical result, it is confirmed that nozzle type is highest efficiency than that of tube type and conventional type, also well fit, respectively.

  • PDF

Effects of Backhole on Hyraulics of Liquid Rocket Swirl Coaxial Injector (액체로켓 동축형 스월인젝터에서 Backhole에 의한 수력학적 영향)

  • Hwang Seong-Ha;Seol Jaehoon;Jeong Wonho;Han Poongkyu;Yoon Youngbin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.287-290
    • /
    • 2002
  • 'Backhole' is an extra empty volume where is located behind the tangential entries at the rear par of the vortex chamber in the swirl coaxial injector. With the backhole, there are three major hydraulic characteristics. First, mass flow rate is increased about $15{\%}$ compared with the case without the backhole. Second, with the backhole, the center region of the injected flow has more large volume than that of without the backhole. The last, some range of the cone angle can be controlled by the backhole Experiments are conducted by using a PDPA apparatus, a mechanical patternator, stroboscopic photography and etc. With the backhole, based on cold-flow tests, the model swirl injector has some Improvement in its performance.

  • PDF

An Experimental Study on the Electrohydrodynamic Atomization of Conducting Liquid Using the AC High Voltages (교류 고전압을 이용한 대전액체의 전기수력학적 미립화에 관한 실험적 연구)

  • Sung, K.A.
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.73-78
    • /
    • 2008
  • An experimental study was performed to explore the drop formation and atomization characteristics in electrohydrodynarnic atomization with flow rate, power supply, voltage frequency, and nozzle size. A basic electrohydrodynarnic atomizer equipment was developed for the analysis of spray visualization and tested for the exploration of relationship between several experimental parameters. In results, the varicose wave had been taken place and the small droplets had been generated less than outer diameter of nozzle on the conditions of 25G of nozzle, flow rate of 2 mL/min, and applied frequency of 50kV at AC power over 5kV voltage. The whipping motion had been grown at applied frequency of 400kV and AC power around 2kV voltage

  • PDF

An Experimental Study on The Effect of Ultrasonic Atomization in Agricultural Twin-fluid Nozzle (농업용 액체 분무용 초음파 분사효과에 관한 실험적 연구)

  • Chung, J.D.;Lim, Y.J.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2003
  • The objective of this study is to investigate experimentally atomization characteristics for differently made an ultrasonic twin-fluid nozzle. A spray system, an ultrasonic system, and three different type(Nozzle type, Tube type, Conventional type)are made and tested by applied with ultrasonic energy. In this investigation, the measurement and calculation of spray droplet are to analyze the effects of ultrasonic energy on the agricultural atomization system. Through the measurement of suray angle, spray column using, high speed camera and PDA, it is found that nozzle type is highest efficiency than that of tube type and conventional type. It was found that the ultrasonic energy increased the atomization efficiency of spray droplets about 9% respectively and spray angle was wide spray.

  • PDF

The Study of Spray Characteristics for the High Speed Rotating Fuel Injection System (고속회전 연료분무장치의 분무특성연구)

  • Choi, Hyung-Kyung;Choi, Chea-Hong;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.53-57
    • /
    • 2007
  • 고속회전의 원심력으로 연료를 공급하고 액체연료의 미립화를 초래하는 회전연료분무장치에 대한 분무특성 시험연구를 수행하였다. 특정한 공간상에 존재하는 액적의 특성을 이해하고자 고속회전 연료분사시스템을 설계 제작하였다. 시험장치는 고속으로 회전하는 Spindle, 회전연료노즐, 가압식 물탱크, 아크릴 케이스로 구성하였다. 액적의 크기와 속도를 측정하기 위해 PDPA(Phase Doppler Particle Analyzer)시스템을 사용하였고, ND-Yag Laser를 사용하여 분무를 가시화 하였다. 시험결과 고속회전 연료분사시스템의 분무특성을 확인할 수 있었고, 회전속도는 액적 크기, 속도, 분무각 및 분무패턴 등의 분무특성에 주요한 영향을 미치는 것으로 확인되었다.

  • PDF