• Title/Summary/Keyword: 액체약

Search Result 428, Processing Time 0.028 seconds

Revisit to Estimate the Time Cost of Ships and Cargoes (우리나라 항만에서의 체선ㆍ체화 시간비용 재추정)

  • Chang, Young-Tae;Sung, Souk-Kyung
    • Journal of Navigation and Port Research
    • /
    • v.26 no.4
    • /
    • pp.383-390
    • /
    • 2002
  • The time cost of ship end cargoes is one of the most important data for decision-making of port investment and operational efficiency. Studies in this area were initiated internationally by Goss and Mann in late 70's and also done in Korea 10 years ago using the same methodology as Goss. The main purpose of this paper is to revisit to estimate the time cost using updated data. The estimation was undertaken sampling data on various investment and operating costs by vessel from 205 vessels, comprising 47.5% of the notional fleet in Korea as well as on cargoes from international trade statistics. Compared with the study of 10 years ago, major finding of this research is that time costs of liquid and dry bulk carriers have increased, in case of the former type, showing almost doubled cost increase. The increase is deemed to be caused by very expensive LNG carriers. Lowered social discount rate in this study compared with 10 years ago, in general, has mused the costs to stay at similar level to the previous study. Sensitivity tests were conducted using various social discount rates.

헬륨냉동계통의 헬륨가스 순도 제어 운전

  • Choe, Ho-Yeong;Son, U-Jeong;Lee, Mun;An, Guk-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.171-171
    • /
    • 2011
  • 헬륨냉동계통은 연구용 원자로인 하나로에서 냉중성자를 생산할 수 있도록 설치된 수조내기기 내의 감속재인 수소가 정상적으로 열 사이펀을 유지하기 위한 주요 계통이다. 헬륨냉동계통은 헬륨가스를 압축하는 헬륨 압축부분과 헬륨가스를 팽창시켜 저온을 생성시키는 헬륨 팽창부분으로 나누어진다. 헬륨 압축부분은 두 개의 스크류가 맞물려 회전하면서 약 1.05 bar(a)의 헬륨가스를 최대 13 bar(a)까지 압축시키는 압축기가 있으며, 헬륨 팽창부분인 냉동박스의 팽창 터빈은 self-acting gas bearing에 의해 구동되며, 저온모드 운전 시작시 헬륨 압축부분에서 일부의 가스는 팽창 터빈 축(shaft)으로 유입되어 회전속도가 서서히 증가하면서 고속으로 회전하여 극저온의 헬륨가스(14~18 K)를 생성하는 주요 기기이다. 헬륨을 팽창하는 부분인 냉동박스 내로 헬륨 압축가스를 유입하기 전에 압축된 헬륨가스 내 불순물의 순도를 분석하여 냉동박스의 주요 부품인 팽창터빈의 운전에 영향을 미치지 않는 것이 가장 중요하다. 따라서 헬륨 저압측에 헬륨가스 내 불순물 즉, 수소($H_2$), 수분($H_2O$), 질소($N_2$), 탄화수소류(CxHy) 및 오일(Oilaerosol) 등의 함량을 분석하기위해 가스 분석기가 설치되어 있으며, 냉동박스 내로 유입되기 전에 헬륨압축에서 순환되는 가스 내 불순물인 수분, 질소, 탄화수소류 및 오일은 10 vpm 이하이어야 하며, 수소 함량은 0.1 % 이내이어야 한다. 헬륨 압축부분에서 순환되는 가스의 불순물이 요구 조건에 만족하도록 헬륨 고압측과 헬륨 저압측에 cryogenic adsorber를 설치하여 가스 내 불순물을 제거하는 가스순도제어 작업을 수행해야 한다. cryogenic adsorber를 사용하기 위해서는 장치 내의 불순 가스를 공정진공도(1.33 X $10^{-3}$ mbar) 이하로 진공배기하는 작업이 매우 중요하다. 이는 계통의 헬륨가스가 오염되지 않도록 하는 것으로 cryogenic adsorber 내에는 액체질소를 충전하여 액체질소 온도에 노출된 활성탄층을 헬륨가스가 흐르면서 수분, 질소, 탄화수소류 및 오일 등이 제거된다. 이 논문에서는 헬륨냉동계통의 가스 순도 제어 작업을 통해 헬륨가스의 순도가 요구조건 이하로 만족하며, 팽창 터빈의 운전에 영향을 미치지 않음을 기술하고자 한다.

  • PDF

Numerical Analysis on Radiative Heating of a Plume Base in Liquid Rocket Engine (플룸에 의한 액체로켓 저부면 복사 가열 해석)

  • Sohn Chae Hoon;Kim Young-Mog
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.85-91
    • /
    • 2005
  • Radiative heating of a liquid rocket base plane due to plume emission is numerically investigated. Calculation of flow and temperature fields around rocket nozzle precedes and thereby realistic plume shape and temperature distribution inside the plume are obtained. Based on the calculated temperature field, radiative transfer equation is solved by discrete ordinate method. With the sample rocket plume, the averaged radiative heat flux reaching the base plane is calculated about 5 kw/m$^{2}$ at the flight altitude of 10.9 km. This value is small compared with radiative heat flux caused by constant-temperature (1500 K) plume emission, but it is not negligibly small. At higher. altitude (29.8km), view factor between the base plane and the exhaust plume is increased due to the increased expansion angle of the plume. Nevertheless, the radiative heating disappears since the base plane is heated to high temperature (above 1000 K due to convective heat transfer.

Optimization of ejector for swirl flow using CFD (CFD를 이용한 회전 운동을 하는 이젝터의 최적화)

  • Kang, Sang-Hoon;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • This paper investigates the effect of the rotational motion of a driving fluid generated by a rotational motion device at the inlet of a driving nozzle for a gas-liquid ejector, which is the main device used for ozonated ship ballast water treatment. An experimental apparatus was constructed to study the pressure and suction flow rate of each port of the ejector according to the back pressure. Experimental data were acquired for the ejector without rotational motion. Based on the data, a finite element model was then developed. The rotational motion of the driving fluid could improve the suction efficiency of the ejector based on the CFD model. Based on the CFD results, structure optimization was performed for the internal shape of the rotation induction device to increase the suction flow rate of the ejector, which was performed using the kriging technique and a metamodel. The optimized rotation induction device improved the ejector efficiency by about 3% compared to an ejector without rotational motion of the driving fluid.

Larqe guantity isolation of Ginsenoside $-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re\;and\;-Rg_1$ in Panax ginseng C.A. Meyer by High Performance Liquid Chromatography (고속액체(高速液體) chromatography에 의(依)한 Ginsenoside $-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re$$-Rg_1$의 대량분리(大量分離))

  • Choi, Jin-Ho;Kim, Woo-Jung;Bae, Hyo-Won;Oh, Sung-Ki;Oura, Hikokichi
    • Applied Biological Chemistry
    • /
    • v.23 no.4
    • /
    • pp.199-205
    • /
    • 1980
  • Relatively large quantity of the major components of saponin, $ginsenoside-Rb_1,\;-Rb_2,\;-Rc,\;-Rd,\;-Re\;and\;-Rg_1$ from Panax ginseng C.A. Meyer were isolated using preparative and semipreparative high performance liquid chromatography, and analyzed by analytical HPLC. The application of HPLC for isolation of ginsenosides was not only very effective for rapid analysis but also reduced the isolation time. The isolation capacity of pure ginsenosides was $30{\sim}50mg/hr$.

  • PDF

The Estimating an Effect of Rapid Flux Increase to a Membrane in the Intermittent Aeration MBR Process Using Alum Treatment (응집제를 활용한 간헐포기 MBR공정에서 순간플럭스 증가가 분리막에 미치는 영향 평가)

  • Choi Song-Hyu;Cho Nam-un;Han Myong Su
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.70-83
    • /
    • 2005
  • By supplying air intermittently in various mode, the effects of oxic/anoxic time ratio and air scrubbing in aeration condition on the membrane flux and permeability were investigated. When suction pump stops, vacuum pressure remains inside the suction pump. Therefore, the effect of remaining vacuum pressure in the suction pump on fouling of membrane was investigated. The effect of EPS (Extra cellular Polymeric Substance) which is generated due to the long SRT and high concentration of MLSS and the dose of coagulant on the membrane were also investigated. The suitable oxic/anoxic time ratio for the best removal efficiency of organic matter and nitrogenous matter was 40 minutes (Oxic) : 20 minutes (Anoxic). At this time ratio, alum was dosed into the aeration tank. The result of dosing alum was that the concentration of alum solution might affect nitrification and denitrification. To remove 1 mg/L of phosphorus in MBR process, it needs 0.75 mg/L of alum solution.

Predicting the Mass Burning Flux of Methanol Pool Fires by Using FDS Model (FDS 모델을 이용한 메탄올 풀 화재의 질량연소플럭스 예측)

  • Kim, Sung-Chan
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.12-18
    • /
    • 2017
  • The present study has been conducted to predict the mass burning flux of methanol pool fire using liquid vaporization model in FDS and examine the effect of thermal properties of liquid fuel such as radiative fraction and mean absorption coefficient. A series of calculation for the pool diameter of 5 cm to 200 cm were performed and the size of computational domain was determined by the scale of the pool diameter. The reference grid size was determined by the grid sensitivity analysis and the computational grids consisted of approximately 750,000 cells. For the methanol pool fire, the mass burning flux predicted by liquid vaporization model of FDS followed the trend of transient characteristics as a function of pool diameter and showed good agreement within measurement uncertainty range of previous studies. The mass burning flux increased with increasing the radiative fraction and the mean absorption coefficient greatly affected on relatively small pool diameter.

Study on the Swirling Motion Effect of Ejector Performance (회전 운동이 이젝터 성능에 미치는 영향에 관한 연구)

  • Kang, Sang-Hoon;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.544-549
    • /
    • 2017
  • This paper aims to examine the effect of rotational fluid motion about the efficiency of the gas - liquid ejector, which is a core unit in a ship equilibrium water treatment system. The ejector is a device for injecting ozone into ship equilibrium by the negative pressure generated by exchange of momentum between water and ozone. The existing ejector ejects the driving fluid with a simple form. In this paper, however, a rotation induction device is applied to the driving nozzle so that the driving fluid can be rotated and injected. To investigate the flow characteristics by the rotational movement of the driving fluid, CFD was used. The pressure and flow rate of the driving fluid, the negative pressure and suction flow rate of the suction fluid in the suction part, and the discharge pressure were predicted. On the basis of the results, the efficiency of the ejector using the rotation induction system was 22.25%, which was about 1.7% better than that of the existing ejector. Finally, to verify the feasibility of the CFD, an experiment was conducted on the ejector using the rotation induction device and the results were similar to those of the CFD.

Ignition Characteristics of Combustion Chamber with $LO_X$ Lead Cyclogram for Liquid Rocket Engine (액체로켓엔진 연소기 산화제 선공급 Cyclogram에 의한 점화특성)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hhyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.137-142
    • /
    • 2008
  • Ignition characteristics of combustion chamber with LOx lead cyclogram for liquid rocket engine were described. The combustion chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion of 12. Cold flow test to determine the filling time of propellant for cyclogram with LOx lead supply, ignition test to check the ability to ignite starting fuel from the ignitor, low pressure combustion test to check the propagation of flame into main fuel-oxidizer mixture from starting fuel and the main combustion stage, and design point combustion test to check the combustion performance were performed. Ignition and combustion tests with LOx lead supply were successfully performed and the stable cyclogram of start sequence for combustion chamber was developed.

  • PDF

Investigation of Drop Test Method for Simulation of Low Gravity Environment (저중력 환경 모사를 위한 낙하 시험 방법 연구)

  • Baek, Seungwhan;Yu, Isang;Shin, Jaehyun;Park, Kwangkun;Jung, Youngsuk;Cho, Kiejoo;Oh, Seunghyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.78-87
    • /
    • 2021
  • Understanding the liquid propellant transport phenomena in low gravity is essential for developing Korea Space Launch Vehicle (KSLV) upper-stage for the diversity of space missions. A low-gravity environment can be simulated via the free-fall method on the ground; however, the air drag is inevitable. To reduce air resistance during free fall, air-drag shield is usually adopted. In this study, the free-fall method was performed with an air-drag shield from a 7-m height tower. The acceleration of a falling object was measured and analyzed. Low gravity below 0.01 g was achieved during 1.2-s free fall with the air-drag shield. The minimum gravitational acceleration value at 1.2-s after free fall was ±0.005 g, which is comparable to the value obtained from Bremen drop tower experiments, ±0.002 g. A prolonged free-fall duration may enhance the low-gravity quality during the drop tower experiments.