• Title/Summary/Keyword: 액적 이동

Search Result 54, Processing Time 0.029 seconds

정전기수력학 인쇄방법에 있어서 잉크 액적의 전하량 및 인가 전기장에 따른 거동 연구

  • Lee, Hyeon-Ju;Lee, Gyeong-Il;Lee, Cheol-Seung;Kim, Seon-Min;Kim, Seong-Hyeon;Byeon, Sang-Eon;Jo, Jin-U;Choe, Yeong-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.187-187
    • /
    • 2011
  • 최근 디스플레이 산업과 태양전지 등의 이차 전지 산업이 발달함에 따라 원가절감과 공정단계의 단순화를 위하여 다이렉트 패터닝 인쇄에 대한 연구가 관심을 받고 있으며, 나노전자부품 제작이 요구되는 전기/전자 소자들은 수백 nm에서부터 수십 ${\mu}$m 수준까지 다양한 해상도의 패턴으로 구성되므로 미세패턴이 가능한 정전수력학 잉크젯프린팅 방식은 기존의 인쇄 방식과 달리, 정전기력을 이용하여 인쇄를 하는 방식으로, 수KV의 고전압을 인가하여 잉크를 대전시키고, 대전된 잉크는 대부의 전기적 반발력에 의해 액적이나 액실로 분열하게 된다. 전하를 띤 액적 또는 액실은 정전기력을 받아 기판 쪽으로 이동을 하게 되는데, 이때 액적의 전하량에 의해 액적의 이동속도와 이동경로가 영향을 받게 된다. 본 연구에서는 잉크의 전기전도도에 따른 액적의 전하량을 계산하여 전기전도도와 액적의 전하량과의 관계를 ANASYS 시뮬레이션과 운동경로 분석을 통해 확인하였다. 전기전도도가 0.307s/m~5.6s/m인 잉크에 따른 액적의 전하량을 계산하였으며, 전기전도도가 변화에 따라. 전하량이 $0.5{\times}10^{-13}C{\sim}2.5{\times}10^{-13}C$ 으로 변화하는 것을 확인하였다.

  • PDF

A Jet Strobe Signal Timing Control of Ink Jet Printer Head for Enhancement of Printing Speed and Quality (인쇄 속도 향상과 화질 개선을 위한 잉크젯 프린터 헤드의 액적 분사 신호 타이밍 제어)

  • Cho, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1727-1734
    • /
    • 2011
  • In this paper, a position control scheme of the ink droplet is presented for the high image quality and print speed ink jet printer. The proposed scheme estimates the impact position and compensates it by control of the jet strobe time based on the dynamic equations describing the moving trajectory of the ejected ink droplet. Compared to the conventional jet strobe control which is based on the simple synchronization with the position signal of the ink jet nozzle, the proposed control scheme provides more accurate impact position control while the carrier is moving with accelerated or decelerated speed as well as steady state speed with fluctuations. The availability of printing during the acceleration and deceleration states of the carrier moving enables the print speed up and the frame size down which means the cost down.

Study on the Pattern of Internal Flow inside a water droplet placed on Vibrating Hydrophobic Surface (진동하는 소수성 표면 위에 놓인 액적의 모드별 내부유동 패턴변화에 관한 연구)

  • Kim, Hun;Shin, Young Sub;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.329-335
    • /
    • 2014
  • This study aimed to understand the internal flow characteristics of a liquid droplet subject to periodic forced vibration. In order to predict the resonance frequency of a droplet, a high-speed camera and macro lens were used to capture internal flow characteristics of a droplet placed on a vibrating hydrophobic surface. Results showed that the droplet assumed a variety of shapes depending on the resonance mode of free droplet, particularly in modes 2, 4, 6, and 8. In addition, the induced internal vortex flow inside the droplet was also observed in each mode. Typically, the induced flow moved upwards along the axis of symmetry and downwards along the surface of the droplet, that is, from the apex to the contact line in modes 2 and 4, after which it broke into a smaller vortex. On the other hand, the large-scale vortex always remained steady in modes 6 and 8. The speed of the flow in mode 4 was always greater than that in mode 2, but those in modes 6 and 8 were similar.

Experimental Study on the Soot Formation Behavior of Octane Single Fuel Droplet Under the Constant Volume Combustion Conditions (정적 연소 조건에서 Octane 단일 연료 액적의 매연 생성 거동에 관한 연구)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.6
    • /
    • pp.389-395
    • /
    • 2017
  • This study was performed to provide the information of the soot formation behavior of octane single fuel droplet under the identical combustion conditions. To achieve this, this experimental study provide the results of the soot formation characteristics of octane droplet in accordance with different initial droplet diameter($d_0$), at the same time, experiment was conducted under the same combustion conditions which are 1.0atm of ambient pressure($P_{amb}$), 21% of oxygen concentration($O_2$) and 79% of nitrogen concentration($N_2$). Visualization of octane droplet combustion was performed by visualization system with high speed camera. The results of maximum soot volume fraction($f_{vmax}$) was almost the same under the equivalent ambient conditions regardless of initial droplet diameter. Furthermore, maximum soot volume fraction was showed the higher value in the measuring direction between $135^{\circ}$ and $315^{\circ}$ since the soot-tail is generated during two opposing igniters movement process.

Transport Mechanism of an Initially Spherical Droplet on a Combined Hydrophilic/Hydrophobic Surface (친수성/소수성 복합표면상에서 초기 구형 액적의 이송 메커니즘)

  • Myong, Hyon Kook;Kwon, Young Hoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.871-884
    • /
    • 2015
  • Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources, and numerically validated the results for a hypothetical 2D shape, initially having a hemicylindrical droplet shape. Myong and Kwon (2015) have also examined the transport mechanism for an actual water droplet, initially having a 3D hemispherical shape, on a horizontal hydrophilic/hydrophobic surface, based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, pressure and surface free energies inside the droplet. In this study, a 3D numerical analysis of an initially spherical droplet is carried out to establish a new concept for droplet transport. Further, the transport mechanism of an actual water droplet is examined in detail from the viewpoint of the capillarity force imbalance through the numerical results of droplet shape and various energies inside the droplet.

Research on the Electrical Charging of a Water Droplet on the Electrode and Droplet Actuation Method using Electrical Charge (전극표면에서 액적의 충전현상과 이를 이용한 액적의 이동 방법에 관한 연구)

  • Jung, Yong-Mi;Oh, Hyung-Chang;Kang, In-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.666-669
    • /
    • 2008
  • Droplet in miniaturized microfluidic systems have received much focused attention recently. In this work, electrical charging phenomenon of a conducting water droplet on the electrode under the dc electric field is studied and using this phenomenon droplet actuation method for microreactor applications is experimentally demonstrated. To find effects of key factors, the effects of electric field, medium viscosity, and droplet size are investigated. A scaling law of charging for the conducting droplet is derived from the experimental results. Unlike the case of a perfect conductor, the estimated amount of electrical charge ($Q_{est}$) of a water droplet is proportional to the 1.59 power of the droplet radius (R) and the 1.33 power of the electric field strength (E). (For a spherical perfect conductor, Q is proportional to R2 and E.) It is thought that the differences are mainly due to incomplete charging of a water droplet resulted from the combined effect of electrochemical reaction at electrode and the relatively low conductivity of water. Using this phenomenon, we demonstrate the transport of the charged droplet and fusion of two oppositely-charged droplets. When electric field is subjected sequentially on the electrode, the charged droplet is transported on the electrode. For the visualization of fusion of charged droplets, the precipitation reaction is used. When subjected to a DC voltage, two droplets charged are moving and merging toward each other due to the Coulombic force and chemical reaction is simultaneously occurred by coalescence of droplets. It may be due to the interchange effect of charge. It is shown that the droplet can be used for microreactor where transporting, merging etc. of reagents constitute unit operation.

  • PDF

Numerical Analysis of the Movement of an Initially Hemispherical Droplet on Hydrophilic/Hydrophobic Surfaces (친수성/소수성 표면상에서 초기 반구형 액적의 움직임에 관한 수치해석)

  • Myong, Hyon Kook;Kwon, Young Hoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.405-414
    • /
    • 2015
  • Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources and numerically validated the results for a hypothetical 2D, initially having a hemicylindrical droplet. In this paper, the movement of an actual water droplet, initially having a 3D hemispherical shape, on horizontal hydrophilic/hydrophobic surfaces is simulated using a commercial computational fluid dynamics (CFD) package, Fluent, with VOF (volume of fluid) method. The results are compared with the 2D analysis of Myong (2014), and the transport mechanism for the actual water droplet is examined based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, surface free and pressure energies inside the droplet.

Atomization Characteristics of Small LRE-Injector Spray According to Injection Pressure Variation (소형 액체로켓엔진 인젝터 분무의 분사압력 변이에 따른 미립화 특성)

  • Jung, Hun;Kim, Jin-Seok;Kim, Jeong-Soo;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.125-128
    • /
    • 2008
  • Atomization characteristics of small LRE-injector spray are investigated by using dual-mode phase Doppler anemometry (DPDA). Velocity, size, number density, and volume flux were measured at various injection pressures along the radial distance to make a close inquiry into spatial distribution characteristic of spray droplets. As the injection pressure increases, the velocity, turbulence intensity, number density, and volume flux of spray droplets become higher, whereas the droplet size ($D_{10}$ or $D_{32}$) gets smaller. Also, velocity and volume flux are proportional to Sauter mean diameter (SMD, $D_{32}$).

  • PDF

Generation of Fine Droplets in a Simple Microchannel (유체 소자를 이용한 미세 액적 생성)

  • Kim, Su-Dong;Kim, Young-Won;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.671-677
    • /
    • 2010
  • In the present study, we designed a microfluidic platform for generating monodisperse droplets with diameters ranging from hundreds of nanometers to several micrometers. To generate fine droplets, T-junction and flow-focusing geometry are integrated into the microfluidic channel. Relatively large aqueous droplets are generated at the upstream T-junction and transported to the flow-focusing geometry, where each droplet is broken into smaller droplets of the desired size by the action of pressure and viscous stress. In this configuration, the flow rate of the inner fluid can be made very low, and the ratio of the inner- and outer-fluid flow rates in the flow-focusing region can be made very high. It has been shown that the present microfluidic device can generate droplets with diameters of approximately $1\;{\mu}m$ (standard deviation: <3%).

Effects of Static Contact Angle and Roughness on Rolling Resistance of Droplet (액적의 구름저항에 대한 정접촉각 및 거칠기의 영향)

  • Cho, Won Kyoung;Cho, Sang Uk;Kim, Doo-In;Kim, Dae-Up;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 2016
  • In this study, the effects of the contact angle (CA) and contact angle hyteresis (CAH) of planar and nano-patterned surfaces on rolling resistance of water droplet were studied. Based on the investigation on the CAH of water droplet on surfaces with various static wettability, it was found that the rolling resistance coefficient of water droplet is highly influenced by the surface pattern as well as CAH. The observed results suggest that the optimal surface patterns should be designed in order to minimize the rolling resistance of water droplet for the practical applications where superhydrophocitiy is required.