• Title/Summary/Keyword: 압축강도특성

Search Result 2,612, Processing Time 0.034 seconds

Engineering Characteristics of the Sedimentary Rocks on Compressive Strength and Weathering Grade (압축강도와 풍화도에 관련된 퇴적암의 공학적 특성)

  • 이영휘;김영준;박준규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.5-17
    • /
    • 2000
  • The physical and mechanical properties of the sedimentary rocks deposited in Taegu and Kyongbuk region have been measured in the laboratory and at the field. Four kinds of rocks such as the shale, the mudstone, the siltstone and the sandstone were the object of this study. In sedimentary rock joint, bedding made it impossible to extract cores for uniaxial compressive test. Some correlations between the uniaxial compressive strength and the other characteristic values such as Point load index, Schmidt hammer rebound, Brazilian strength, P-wave velocity and Absorption ratio are made. The chemical and mineral compositions are also investigated by the XRF and XRD analysis. In addition, the weathering grade of rocks are classified by the quantitative indices of Point load index, Schmidt hammer rebound and Absorption ratio.

  • PDF

Unconfined Compressive Strength Characteristics of E.S.B. Mixed Soil Based on Soil Compactness and Curing Period (토양의 다짐도와 재령기간에 따른 E.S.B. 혼합토의 일축압축강도특성)

  • Oh, Sewook;Kim, Hongseok;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.47-55
    • /
    • 2019
  • This study aims to provide basic data for soil packaging differing in accordance with the strength characteristics of mixed soil, using E.S.B. (Eco Soil Binder), an eco-friendly hardening agent, based on the type of soil. The soil used in this study is weathered granite soil readily collected in and around Korea, and is classified into SW, SP and SC according to soil classification systems. The test piece for the unconfined compressive strength test has dimensions of 50 mm in diameter and 100 mm in height, with the mix ratio of E.S.B. proportional to the weight of mixed soil changed from 5% to 10%, 15%, 20%, 25%, and 30%, where compactness of 90% and 100% were applied according to each condition to analyze the unconfined compressive strength characteristics at material ages of 3, 7, and 28 days. Also, the ratio of soil packaging standard strength and unconfined compressive strength was calculated to determine the optimal E.S.B. mix ratio, whereby the field applicability of the unconfined compressive strength using the estimation equation of ACI209R was evaluated.

The Properties of Compressive Strength of Non-standard Specimens Considered Strength Level (강도수준을 고려한 비표준형 공시체의 압축강도 특성)

  • Lee, Seung-Han;Jung, Yong-Wook;Yun, Yong-Ho;Jang, Seck-Soo;Yeo, In-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.781-784
    • /
    • 2008
  • Recently as application of high-strength concrete on concrete structures has been on the rise, use of non-standard specimen is increasing. Therefore, this study investigated the effect of specimen's size effect, ratio of height/diameter and curing conditions on concrete compressive strength. Results of experiments showed that as size of specimen increased as much as 1 mm, standard design compressive strength of 24MPa fell as much as0.15MPa 40MPa fell as much as 0.1MPa 80MPa fell as much as 0.3MPa, and it indicates that as the level of strength is intensified, the decrement of compressive strength increases. As ratio of height/diameter increased as much as 1.0, compressive strength of 24MPa fell as much as 2.9MPa 40MPa fell as much as 3.7MPa 80MPa fell as much as 9.8MPa, and it means that as strength of concrete is higher, influence of ratio of height/diameter becomes bigger.

  • PDF

Characteristics of Natural Hydraulic Lime Mortar Mixed with Basalt Fiber (바잘트 섬유를 혼합한 천연수경성석회 모르타르의 특성)

  • Moon, Ki-Yeon;Cho, Jin-Sang;Cho, Kye-Hong;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.61-68
    • /
    • 2015
  • In this study, the strength properties of NHL based mortar with blending basalt fiber were investigated. In the first step, it was evaluated that physical properties of NHL based mortar according to mixing method of four types of basalt fiber and then mixing method of one type was selected. As a result of assessment, it showed that the physical properties with mixing method of dry blending were better than that of wet blending and mixing method that basalt fiber pre-mixed with NHL for 5 min in a blender was selected and water and aggregate were finally added. Secondly, the investigation of blending fiber length on the compressive and flexural strength for basalt fiber reinforced NHL based mortars was carried out. The compressive strength was decreased with adding fiber, and the flexural strength was increased more than plain mortar. In the case of adding 6 mm fiber, the compressive and flexural strength were improved more than that of others.

Behavior and Capacity of Compression Lap Splice in Unconfined Concrete with Compressive Strength of 40 and 60 MPa (횡보강근이 없는 40, 60 MPa 콘크리트에서 철근 압축이음의 거동과 강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.291-302
    • /
    • 2009
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. New criteria for the compression lap splice including the effects of concrete strength are required for practical purpose of ultra-high strength concrete. Characteristics of compression lap splice have been extensively investigated and main parameters are derived. In addition, an experimental study has been conducted with column specimens in concrete strength of 40 and 60 MPa. The strength of the compression lap splice consists of bond and end bearing and two contributors are combined. Therefore, combined action of bond and end bearing should be assessed. Compared with tension splices, concrete strength significantly affects the strength of compression splices due to short splice length and existence of end bearing. Test results show that the splice strength can be evaluated to be proportional to square root of compressive strength of concrete. The stress states of concrete surrounding spliced bars govern the strengths of bond and end bearing. Because the axial stress of the concrete is relatively high, the splice strength is not dependent on clear spacing. End bearing strength is not affected by splice length and clear spacing and is expressed with a function of the square root of concrete strength. The failure mode of specimens is similar to side-face blowout of pullout test of anchors and the strength of end bearing can be evaluated using the equation of side-face blowout strength. Because the stresses developed by bond in compression splices are nearly identical to those in tension splices, strength increment of compression splices is attributed to end bearing only.

Compressibility and Strength Characteristics of Light-weighted Foam Soil (경량기포혼합토의 압축 및 강도특성 연구)

  • 윤길림;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.5-13
    • /
    • 2004
  • Strength and compressibility characteristics of Light-Weighted Foam Soil (LWFS) are experimentally investigated in the paper. LWFS is composed of the dredged soils, cement and air foam to reduce unit-weight and to increase compressive strength. For these purposes, both unconfined compression tests and triaxial compression tests are carried out fer artficially prepared specimens of LWFS with various initial water contents, cement contents, mixing ratio of silty dredged soils and different confining stresses. The experimental results of LWFS indicate that the stress-strain relationship and the compressive strength are strongly influenced by cement contents rather than intial water contents of the edged soils. In this paper, the normalizing scheme considering the ratio of initial water contents, cement contents, and air foam contents has been proposed to evaluate the relationship between compressive strength of LWFS and a normalized factor.

Anisotropic Behavior of Decomposed Granite Soils (화강풍화토의 비등방성 거동특성)

  • Ahn Tae-Bong;Jung Chan-Mook;Jin Han-Gyu;Hoh Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.604-609
    • /
    • 2005
  • 화강풍화토의 강도와 변형특성을 조사하기 위하여 불포화배수 삼축압축시험을 실시하였다. 0, 45, 90 이차압축시의 변형거동에 관한 시간의존성은 다짐각도와 관계가 없는 것으로 판단되었다. 다짐각도가 압축강도와 변형에 미치는 영향은 특히 낮은 구속압력시에 크다. 다짐각도가 다르다 하더라도 다일러턴시 비율은 다일러턴시로 인한 강도증가와 상관하여 변화한다. 따라서 다짐풍화토는 초기 비등방성 조직을 갖고 있는 모레와 같이 비등방성 역학적 성질을 갖는다고 할 수 있다.

  • PDF

An Experimental Study of Mechanical Properties of High-strength Concrete (고강도 콘크리트의 역학적 특성에 대한 실험 연구)

  • Yang, In-Hwan;Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.206-215
    • /
    • 2017
  • An experimental program was carried out to investigate the mechanical properties of high-strength concrete. High-strength concrete with compressive strengths of 80 to 120 MPa was tested. Test results are presented regarding effect of water-binder ratio on compressive strength and compressive strength gain. In addition, the effect of curing methods on compressive strength, elastic modulus, splitting tensile strength, and modulus of rupture is investigated. Test results of elastic modulus, splitting tensile strength, and modulus of rupture are compared with predictions from the current design recommendations. Predictions of elastic modulus by using KCI recommendation has good agreement with test results. However, predictions of modulus of rupture by using KCI recommendation underestimate the test results. ACI 363R recommendations predict well test results of splitting tensile strength and modulus of rupture. ACI 363R recommendations for predicting splitting tensile strength and modulus of rupture can be used for high-strength concrete with compressive strengths up to 120 MPa.

Unconfined Compression Strengh Characteristics and Degree of Disturbance of Busan Marine Clay (부산 해성 점토의 일축압축강도 특성 및 교란도에 관한 연구)

  • Kim, Byoung-Il;Lee, Seung-Won;Lee, Seung-Hyun;Cho, Sung-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.29-36
    • /
    • 2005
  • In this study, relations among unconfined compressive strength, strain at maximum strength and depth were compared with each other. Test specimen is marine clay originated from the place near Ga-duck island in Busan city. In addition, influence of impure material contained in specimen and that of total core recovery(TCR) on unconfined compressive strength and degree of disturbance were investigated. As a result of tests, unconfined compressive strength decreases as strain corresponding to maximum strength increases. Also, the deeper the sampling depth and the bigger the TCR, the unconfined compressive strength increases. Especially, as the TCR increases, the unconfined compressive strength Increases and quality of specimen is enhanced.

Correlation between Mix Proportion and Mechanical Characteristics of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 배합비와 역학적 특성 사이의 관계 추정)

  • Choi, Hyun-Ki;Bae, Baek-Il;Koo, Hae-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.331-341
    • /
    • 2015
  • The main purpose of this study is reducing the cost and effort for characterization of tensile strength of fiber reinforced concrete, in order to use in structural design. For this purpose, in this study, test for fiber reinforced concrete was carried out. Because fiber reinforced concrete is consisted of diverse material, it is hard to define the correlation between mix proportions and strength. Therefore, compressive strength test and tensile strength test were carried out for the range of smaller than 100 MPa of compressive strength and 0.25~1% of steel fiber volume fraction. as a results of test, two types of tensile strength were highly affected by compressive strength of concrete. However, increase rate of tensile strength was decreased with increase of compressive strength. Increase rate of tensile strength was decreased with increase of fiber volume fraction. Database was constructed using previous research data. Because estimation equations for tensile strength of fiber reinforced concrete should be multiple variable function, linear regression is hard to apply. Therefore, in this study, we decided to use the ANN(Artificial Neural Network). ANN was constructed using multiple layer perceptron architecture. Sigmoid function was used as transfer function and back propagation training method was used. As a results of prediction using artificial neural network, predicted values of test data and previous research which was randomly selected were well agreed with each other. And the main effective parameters are water-cement ratio and fiber volume fraction.