• Title/Summary/Keyword: 압전 방법

Search Result 284, Processing Time 0.05 seconds

Clamped capacitance control of a piezoelectric single crystal vibrator using a generalized impedance converter circuit (범용 임피던스 변환회로를 이용한 압전 단결정 진동자의 제동용량 제어)

  • Kim, Jungsoon;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.1
    • /
    • pp.46-52
    • /
    • 2018
  • The piezoelectric single crystals used in piezoelectric transformers have a problem that power transfer capacity is comparatively low due to their high input impedance. In this study, we suggest a method to improve the power transfer capacity by reducing the high input impedance of the piezoelectric single crystal vibrator by connecting a capacitance increasing circuit to the electrical terminals of the piezoelectric single crystal vibrator where the circuit is a GIC (Generalized Impedance Converter) circuit using operational amplifiers. The result of measuring driving characteristics after applying the designed capacitance increasing circuit to the $128^{\circ}$ rotated Y-cut $LiNbO_3$ crystal vibrator confirmed that the input impedance decreased by 25 %, electromechanical coupling factor increased by 30 %, and the power transfer capacity increased by about 17 to 30 times in voltage conversion characteristics.

Estimation of Cable Damages using Piezo Disk and Optical Fiber Sensors (압전소자와 광섬유센서를 이용한 케이블의 손상평가)

  • Park, Kang-Geun;Kim, Ie-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.3
    • /
    • pp.67-74
    • /
    • 2009
  • Presently means of utilizing sensors such as Piezoelectric(PZT) Element for evaluating the affect of oscillator, strain gauge for analyzing physical changes and use of Fiber Bragg Grating(FBG) Sensor are widely practiced in the field. In this study, PZT and FBG sensors were used to tearing damage of cable systems in these sensors. Cable systems are a construction of elements carrying only tension and no compression or bending in membrane structure. But damage detection of cable systems by using existing safety diagnosis is difficult to detect the characteristic change of overall structural action. If cable snaps are occurred to cable release and tear in tension structures, these are set up a vibration. So, we used piezo-electric materials and result of experiment using this was compared with result of experiment using FBG sensors The purpose of this research is to develop of damage detection method of cable system in tensile stress.

  • PDF

Resonant Mode Analysis of Microwave Film Bulk Acoustic Wave Resonator using 3D Finite Element Method (3차원 유한 요소법을 이용한 초고주파 압전 박막 공진기의 공진 모드해석)

  • 정재호;송영민;이용현;이정희;고광식;최현철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.18-26
    • /
    • 2001
  • In this paper, the resonant characteristics and modes of the film bulk acoustic wave resonator (FBAR) used in 1~2 GHz frequency region are analyzed by it's input impedance which was calculated by three dimensional finite element method formulated as eigenvalue problem using electro-mechanical wave equation and boundary condition. It was extracted that the resonant and the spurious characteristics considering the effects of electrode area and shape variation and unsymmetry of upper and lower electrode. Those effects couldn't be analyzed by on dimensional analysis, e.g. Mason equivalent model. The simulation result was confirmed by comparing with the simulation data from Mason model analysis and the measured data of the ZnO FBAR fabricated using micro-machining technique. Also, through the simulation of the area variations of FBAR, it was obtained that the optimum ratio of length and thickness is 20:1 and the minimum ratio is 5:1 to operate thickness vibration mode.

  • PDF

Electric-Field-Induced Strain Measurement of Ferroelectric Ceramics Using a Linear Variable Differential Transducer (선형 가변 차동 변압기를 이용한 강유전 세라믹의 전기장 인가에 따른 변형 측정)

  • Hyoung-Su Han;Chang Won Ahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.2
    • /
    • pp.141-147
    • /
    • 2024
  • The measurement of strain under an electric field has been widely employed to comprehend the fundamental principles of electro-mechanical responses in ferroelectric, piezoelectric, and electrostrictive materials. In particular, understanding the strain properties of piezoelectric materials in response to electrical stimulation is crucial for researching and developing components such as piezoelectric actuators, acoustic devices, and ultrasonic generators. This tutorial paper introduces the components and operational principles of the linear variable differential transducer (LVDT), a widely used displacement measurement device in various industries. Additionally, we present the configuration of an experimental setup using LVDT to measure the strain characteristics of ferroelectric, piezoelectric, or electrostrictive materials under the application of an electric field. This paper includes simple measurement results and analyses obtained through the LVDT experimental setup, providing valuable information on research methods for the electro-mechanical interactions of various materials.

Piezoelectric property of PZT ceramics by DC field and corona discharge poling (직류전계 및 corona방전에 따른 PZT 세라믹스의 분극과 압전특성)

  • Park, In-Cheol;Im, Jin-Ho;Lee, Jun-Hyeong;Jo, Sang-Hui
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.178-183
    • /
    • 1995
  • Piezoelectric properties of sintered specimen having a tetragonal phase of $Pb_{0.9888}Sr_{0.012}(Zr_{0.52}Ti_{0.48})O_{3}$ were comparatively studied with two different poling methodes, i.e., DC field and corona discharge technique. Internal stress of poled specimens by indentation fracture toughness was analyzed to evaluate degradation phenomenon. As the results, it was confirmed that corona discharge poling technique is practicable and has merits such as low-temperature poling, slow degradation and no electric breakdown comparing to DC field poling. However, corona discharge technique showed lower Kp value than DC field poling.

  • PDF

Quantitative Estimation of Transmitted and Reflected Lamb Waves at Discontinuity (불연속면에서 램파의 반사와 투과에 대한 정량적 추정)

  • Lim, Hyung-Jin;Sohn, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.359-366
    • /
    • 2010
  • For the application of Lamb wave to structural health monitoring(SHM), understanding its physical characteristic and interaction between Lamb wave and defect of the host structure is an important issue. In this study, reflected, transmitted and mode converted Lamb waves at discontinuity of a plate structure were simulated and the amplitude ratios are calculated theoretically using Modal decomposition method. The predicted results were verified comparing with finite element method(FEM) and experimental results simulating attached PZTs. The result shows that the theoretical prediction is close to the FEM and the experimental verification. Moreover, quantitative estimation method was suggested using amplitude ratio of Lamb wave at discontinuity.

Baseline-Free Crack Detection in Steel Structures using Lamb Waves and PZT Polarity (램파와 압전소자 극성을 사용한 강구조의 실시간 균열손상 감지기법 개발)

  • Sohn, Hoon;Kim, Seung-Bum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.79-91
    • /
    • 2006
  • A new methodology of guided wave based nondestructive testing (NDT) is developed to detect crack damage in civil infrastructures such as steel bridges without using prior baseline data. In conventional guided wave based techniques, damage is often identified by comparing the "current" data obtained from a potentially damaged condition of a structure with the "past" baseline data collected at the pristine condition of the structure. However, it has been reported that this type of pattern comparison with the baseline data can lead to increased false alarms due to its susceptibility to varying operational and environmental conditions of the structure. To develop a more robust damage diagnosis technique, a new concept of NDT is conceived so that cracks can be detected without direct comparison with previously obtained baseline data. The proposed NDT technique utilizes the polarization characteristics of the piezoelectric wafers attached on the both sides of the thin metal structure. Crack formation creates Lamb wave mode conversion due to a sudden change in the thickness of the structure. Then, the proposed technique instantly detects the appearance of the crack by extracting this mode conversion from the measured Lamb waves even at the presence of changing operational and environmental conditions. Numerical and experimental results are presented to demonstrate the applicability of the proposed technique to crack detection.