• Title/Summary/Keyword: 압력 간섭

Search Result 139, Processing Time 0.03 seconds

An Experimental Study on the Characteristics of Twin Spray Ejected from Two Swirl Spray Nozzles (두개의 와류분무 노즐로부터 분사되는 이중분무의 분무특성에 관한 실험적 연구)

  • 김인구;이상룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.359-372
    • /
    • 1988
  • Characteristics of twin spray ejected from two swirl spray nozzles were studied experimentally. By using a patternator for measuring volumetric flux of drop flow at various locations inside the spray, variation of the twin spray pattern along the axial direction was studied with changing the injection pressure and the distance between the nozzles. The general findings from the experiments are as follows: (i) as axial distance from the nozzles increases, the spray pattern in x-z plane which contains both nozzles changes significantly. On the other hand the spray pattern in y-z plane which passes the midpoint between two nozzles remains almost unchanged at outer region as axial distance and injection pressure vary; (ii) at the downstream of the twin spray with spray interaction, the maximum volumetric flux in y-z plane (q$_{max}$)$_{y}$, has tendency to become larger than that of x-z plane (q$_{max}$)$_{x}$, due to a characteristic(hollow cone shape) of the constituting swirl sprays, and this trend is pronounced at higher injection pressure since the cross-section of each single spray remains hollow at the longer axial distance from each nozzle with higher injection pressure; (iii) at a certain axial distance from the nozzles, the cross-sectional shape of the boundary of the twin spray tends to be circular similar to that of the single spray with twice the flow-rate, and that distance is not proportional to the distance between two nozzles; (iv) though there are some collisions between droplets from each nozzles of twin spray, in present experimental range, the flow pattern of gas including the entrainment effect plays the key role in spray interaction.n.ion.n.

Breeding Populations Trend of the Saunders' Gull (Larus saundersi Swinhoe) in Incheon Bay (인천만의 검은머리갈매기(Larus saundersi) 번식개체군 변동)

  • Park, Heon-Woo
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.2
    • /
    • pp.49-55
    • /
    • 2010
  • There are only 10,000 Saunders' Gull's (Larus saundersi Swinhoe) surviving in the world today. But they are being threatened by coastal habitat, degradation, development pressure and disturbance by humans. Their first breeding record in Korea was in 1998 and the breeding status has been studied, however, the breeding status is not sufficient for this species. This study was performed from May 1999 to June 2009 to clarify breeding populations and trend of the Saunders' Gull population in Korea. The results indicate that the breeding population has been increasing gradually from 300 to 1,300 individuals, though disturbance increased. As threats to the breeding birds, physical environmental factors such as development and human disturbance were identified as a major threatening factors. Also, as a secondary factor, eggs and chicks are falling pray to predators. Incheon bay breeding places have been created by a landfill projects for the purpose of urban and industrial development, thus, these places will no longer be available for this species. In addition, the breeding habitat has been reduced and changed by expansions of development on the ground. Therefore, well planed management schemes should be provided for the species' breeding population to be continually breed and survive.

Effects of Underexpanded Plume in Transonic Region on Longitudinal Stability (천음속 영역에서 과소 팽창 화염이 종안정성에 미치는 영향에 관한 연구)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.118-128
    • /
    • 2004
  • Exhaust plume effects on longitudinal aerodynamics of missile were investigated by wind tunnel tests using a solid plume simulator and CFD analyses with both the solid plume and air jet plumes. Approximate plume boundary prediction technique was used to produce the outer shape of the solid plumer and chamber conditions and nozzle shapes of the air jet plumes were determined through plume modeling technique to compensate the difference in thermodynamic properties between air and real plume. From comparisons among turbulence models in case of external flow interaction with the air jet plume, Spalart-Allmaras model turned out to give accurate result and to be less grid-dependent. Effects induced by the plume were evaluated through the computations with Spalart-Allmaras turbulence model and the air jet plume to account for various ratios of chamber and ambient pressure and Reynolds number under the flight test condition.

Numerical Analysis of Flow Fields for Optimum Design of Vehicle Vacuum Pump with Multivanes (자동차용 진공펌프 멀티 베인의 최적 설계를 위한 유동장 수치해석)

  • Lim, Tae-Eun;Lee, Kye-Bock
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.883-890
    • /
    • 2011
  • A numerical study was conducted to determine the optimal design for a vehicle vacuum pump. The degree of vacuum was examined for different design factors such as the angle of vanes, number of vanes, angle and position of the pump inlet-outlet pipe, and angular rotational speed of vanes. The results show that there is a little difference in the degree of vacuum when the angle of vanes are changed, but an angular change in the outlet pipe reduces the pump loss. As the rotational speed is increased, the mass flow rate increases, but a high rotational speed does not result in the maximum degree of vacuum. In addition, when the number of vanes is increased, the scattering range of mass flow rate decreases and pressure drop is abated.

LES for Turbulent Duct Flow with Surface Mass Injection (질량분사가 있는 덕트 난류유동의 LES 해석)

  • Kim, Bo-Hoon;Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.232-241
    • /
    • 2011
  • The hybrid rocket shows interesting characteristics of complicated mixing layer developed by the interaction between turbulent oxidizer flow and injected surface mass flow from fuel vaporization. In this study, the compressible LES was conducted to explore the physical phenomena of surface oscillatory flow induced by the flow interferences in a duct domain. From the numerical results, the wall injection generates the stronger streamwise vorticites and the negative components of axial velocity accompanied with the azimuthal vorticity near the surface. And the vortex shedding with a certain time scale was found to be developed by hydrodynamic instability in the mixing layer. The pressure fluctuations in this calculation exhibit a peculiar peak at a specific angular frequency($\omega$=8.8) representing intrinsic oscillation due to the injection.

Comparative Analysis of Flow Characteristics Using Reflected Pressure Wave at Crossing of Subway Trains in Straight Tunnel (직선터널에서 지하철 열차의 교차운행 시 반사파 간섭에 따른 유동 특성 비교분석)

  • Lee, Deuksun;Cho, Jungmin;Lee, Myeongho;Sung, Jaeyong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.3
    • /
    • pp.123-129
    • /
    • 2018
  • In this study, CFD is used to compare and analyze the flow characteristics using reflected pressure wave during the intersection of two trains in straight tunnel. Two tunnels of different lengths; 600 m and 3,400 m were designed and numerical analysis of the flow characteristics of two tunnels carried out by setting the crossing state of the two trains at a constant velocity of 27 m/s form the center of the tunnel. The simulation model was designed using the actual tunnel and subway dimensions The train motion was achieved by using the moving mesh method. For the numerical analysis, $k-{\omega}$ standard turbulence model and an ideal gas were used to set the flow conditions of three-dimensional, compressible and unsteady state. In the analysis results, it was observed that the inside of the long tunnel without interference of the reflected pressure wave was maintained at a pressure lower than the atmospheric pressure and that the flow direction was determined by the pressure gradient and shear flow. On the other hand, the flow velocity in the short tunnel was faster and the pressure fluctuation was noted to have increased due to the reflected pressure wave, with more vortices formed. In addition, the flow velocity was noted to have changed more irregularly.

Real Option Study on Sustainable DMZ Management under Biodiversity Uncertainty (생물다양성 불확실성하에서 지속가능한 DMZ 관리 실물옵션 분석)

  • Lee, Jaehyung
    • Environmental and Resource Economics Review
    • /
    • v.28 no.4
    • /
    • pp.617-643
    • /
    • 2019
  • The Demilitarized Zone(DMZ) is a buffer zone set between the southern and northern limit lines established after the 1953 Armistice Agreement. It is an important natural environment conservation area where wild species of animals and plants live. On the other hand, the development pressure on the DMZ will increase when the inter-Korean economic cooperation is activated in the future. As a result, DMZ development should consider not only the economic cost-benefit aspects, but also how to assess and conserve the biodiversity of the DMZ, as well as the recovery costs and budget. This paper develope a sustainable DMZ management model under biodiversity uncertainly by using real option approach. The model is also designed to reflect the political risk and regional specificity of the DMZ. Through empirical analysis, I derive the biodiversity threshold (b*) that can secure the DMZ investment economy under uncertainty. In addition, through the sensitivity analysis, I derive the factors influencing the biodiversity threshold, and suggest the policy implications for sustainable management of DMZ.

An Analysis of the Springing Phenomenon of a Ship Advancing in Waves (파랑 중에 전진하는 선박에 대한 스프링잉 현상 해석)

  • H.Y. Lee;H. Shin;H.S. Park;J.H. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.41-46
    • /
    • 2001
  • The very large vessels like VLCC and container ship have been built recently and those vessels have smaller structural strength in comparison with the other convectional skips. As a result the fatigue destruction of upper deck occurs a frequently due to the springing phenomenon at the encountering frequencies. In this study, the hydrodynamic loads are calculated by three-dimensional source distribution method with the translating and pulsating Green function. A ship is longitudinally divided into 23 sections and the added mass, damping and hydrodynamic force of each section is calculated. focusing only on the vertical motion. Stiffness matrix is calculated by the Euler beam theory. The calculation is carried out for Esso Osaka.

  • PDF

Design of Polymer Composites for Effective Shockwave Attenuation (충격파 완화 복합재의 설계)

  • Gyeongmin Park;Seungrae Cho;Hyejin Kim;Jaejun Lee
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.21-31
    • /
    • 2024
  • This review paper investigates the use of shockwave attenuating materials within composite structures to enhance personnel protection against blast-induced traumatic brain injury (bTBI). This paper also introduces experimental methodologies exploited in the generation and measurement of shockwaves to evaluate the performance of the shock dissipating composites. The generation of shockwaves is elucidated through diverse approaches such as high-energy explosives, shock tubes, lasers, and laser-flyer techniques. Evaluation of shockwave propagation and attenuation involves the utilization of cutting-edge techniques, including piezoelectric, interferometer, electromagnetic induction, and streak camera methods. This paper investigates phase-separated materials, including polyurea and ionic liquids, and provides insight into composite structures in the quest for shockwave pressure attenuation. By synthesizing and analyzing the findings from these experimental approaches, this review aims to contribute valuable insights to the advancement of protective measures against blast-induced traumatic brain injuries.

Analysis of Seawater Intake System using the RNG k-𝜖 Algorithm (RNG k-𝜖 알고리즘을 이용한 해수취수시스템 분석)

  • Kim, Ji-Ho;Kim, Tae-Won;Lee, Seung-Oh;Park, Young-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6447-6454
    • /
    • 2013
  • Seawater intake systems have significant problems due to seawater pollution, suspended solids, unstable intake and maintenance etc. An underground type seawater intake system was newly developed to overcome the existing weaknesses and was facilitated in Gyukpo port. In this study, to check the performance of the new system, the samples for water quality and the 3-D numerical modeling test were conducted. The five times test included the COD, total nitrogen, total phosphorus, pH, and suspended solid for the intake system. The analyses show that the COD, total nitrogen, total phosphorus, PH showedminor changes before and after. On the other hand, the change in suspended solids was significant and water was purified below 5 mg/l, first level fisheries water, after. The numerical model adopted the RNG $k-{\epsilon}$ algorithm and the CFX model based on the finite volume method. The porosity algorithm was used to reproduce filtered-sand, outer diameter, and thickness. The numerical results showed that the double pipe is advantageous in that it provides a uniform pressure between the inner and outer pipe for the flow to be stable. In addition, the use of multiple intake pipes did not interfere with the discharge reduction of 0.98 at the both intake pipes compared with the central intake pipe.