• Title/Summary/Keyword: 압력손실모델

Search Result 106, Processing Time 0.026 seconds

Study on Numerical Model of Leakage Flow at Gap between Compartments in a Building (건축물 구획실간 틈새에서의 누설유동에 대한 수치모델 연구)

  • Kim, Jung-Yup;Kim, Ji-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.562-567
    • /
    • 2013
  • 1D-numerical analysis of the network algorithm with the orifice equation for the relationship between pressure difference and flowrate has been mostly used to analyse leakage flow at the gap. In this study, a 3D-numerical method applying momentum loss model to the gap region in the computational domain is represented to reflect effectively the effect of leakage flow by determining the proportion of pressure difference to air passage velocity. While the 3D-numerical method is verified through the computation of the two compartments model, the numerical analysis of the stack effect in a building stairway is performed. As the temperature of air outside drops, the pressure in the upper stairway and leakage flowrate through the gap in the door rise. The change of gap area does not have an effect on pressure in the stairway for the analysis conditions.

A study on the behavior of the piston with varying friction force in the double cylinder-typed extension gas spring (2중 실린더 구조를 갖는 인장 가스스프링의 마찰력 변화에 따른 피스톤 거동에 대한 연구)

  • Jeong, Nam-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.9-14
    • /
    • 2018
  • The function of gas springs is based on the compression of a gas. They are used in a wide variety of industries, and demand for them is increasing. Gas springs can be divided into compression and extension springs. Extension springs have not been studied much in relation to control of the piston speed, unlike compression springs. In this study, the magnitude of the piston rebound pressure was theoretically predicted by calculating the pressure loss in a double-cylinder extension gas spring. Numerical simulations of the piston behavior were carried out for small and large amounts of friction between the piston and the cylinder. FLUENT was used for the simulation with a 6-DOF model and UDF to simulate the behavior of the piston. The calculation regions of the front and rear of the piston were separated, and different types of grids were generated in the regions to implement a dynamic mesh using only a layering method. The results show that the piston returns with the target speed in both cases. However, the patterns of the piston behavior reaching the final speed are different.

Study on a Coaxial Plasma Gun (III)

  • Bak, Hae-Ill;In, Sang-Ryul;Chung, Kie-Hyung;Lee, Un-Chul
    • Nuclear Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.163-170
    • /
    • 1980
  • A Mather type plasms gun is operated at below 1 torr with a energy storage system (4KJ, 16.5KV, 35nH) to study the conditions of the efficient plasma focus. When the $D_2$ gas filling pressure is 0.18 torr and the stored energy is 3.8KJ, the discharge current of max. 180KA is obtained and the average axial velocity of the plasma is about $7cm/\mu\textrm{s}$. This is lower than the calculated velocity with above conditions by the snow-plow model. The discrepancy is due to the currents flowing over the insulator surface. The plasma focus occurs at low pressure compared with the results obtained by Bruzzone. The reasons are such that the plasma gun employed in this experiment is large for tile stored energy and the concentration of the residual gas is comparatively high. It is confirmed by a Long counter that the neutrons are generated from the dense plasma focus.

  • PDF

Optimal Design for the Rotor Overlap of a Supersonic Impulse Turbine to Improve the Performance (초음속 충동형 터빈 성능개선을 위한 동익 오버랩 최적설계)

  • Cho, Jongjae;Shin, Bong Gun;Kim, Kuisoon;Jeong, Eunhwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.33-41
    • /
    • 2014
  • In a supersonic turbine, A rotor overlap technique reduced the chance of chocking in the rotor passage, and made the design pressure ratio satisfied. However, the technique also made additional losses, like a pumping loss, expansion loss, etc. Therefore, an approximate optimization technique was appled to find the optimal shape of overlap which maximizes the improvement of the turbine performance. The design variables were shape factors of a rotor overlap. An optimal design for rotor overlap reduces leakage mass flow rate at tip clearance by about 50% and increases about 4% of total-static efficiency compared with the base model. It was found that the most effective design variable is the tip overlap and that the hub overlap size is the lowest.

A Numerical Investigation on the Isentropic Efficiency of Steam Turbine Nozzle Stage with Different Nozzle Vane Thickness and Mass Flow Rate (증기 터빈 노즐 베인의 두께 변화와 유량별 등엔트로피 효율 변화에 관한 수치해석)

  • Lee, Jong Hyeon;Park, Hee Sung;Jung, Jong Yun;Kim, Joon Seob;Jung, Ye Lim;Park, Sung Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.685-691
    • /
    • 2017
  • In this study, the influence of mass flow rate on the isentropic efficiency of the steam turbine nozzle stage is investigated. A realistic three-dimensional numerical model, which is based on the compressible Navier-Stokes equations, is developed for the steam phase. The comprehensive conservation laws and a kinetic model for steam are investigated. With two different models for the three-dimensional geometry of the nozzle stage, the pressure and temperature distributions, velocity, Mach number. and Markov energy loss coefficient are calculated. A maximum efficiency of 96.66% is found at a mass flow rate of 0.9 kg/s in model A. In model B, a maximum efficiency of 97.32% is found at a rate of 1.6 kg/s. It is determined that the isentropic nozzle efficiency increases as the Markov energy loss coefficient decreases through a nearly linear relationship.

Numerical Investigation of the Effect of flow Passage Variation on the Projection Distance of the Foam Monitor (유로형상변경에 따른 폼 모니터 분사거리 변화의 수치적 해석)

  • Lee, Young-Hoon;RYU, Young-Chun;Seong, Jeong-Hyun;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.244-251
    • /
    • 2016
  • In this study, the relationship between flow characteristics and projection distance, depending on the shape was examined. A numerical investigation technique for fluid analysis of a foam monitor was developed for the prediction, comparison and validation of the actual injection performance. The foam monitor changes the flow pattern of fluid flow according to the shape, The fluid losses were calculated from the numerical investigation affecting the projection distance. The basic form of foam monitor was used as a designed shape in N. The modified model used the length increase model of the flow path, and straight line of the model. The inlet pressure was 6.5bar. The results showed that the length increase model of the flow path and straight line of the model in the nozzle projection distance had improved. The results comparing the error rates projection performance were well matched to the 7.43% obtained from the validity test of the analysis method.

The study of CFD Modelling and numerical analysis for MSW in MBT system (생활폐기물 전처리시스템(MBT)의 동역학적 수치해석 및 모델링에 대한 연구)

  • Lee, Keon joo;Cho, Min tae;Na, Kyung Deok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.3
    • /
    • pp.77-86
    • /
    • 2010
  • In this study, the model of the indirect wind suction waste sorting machine for characteristics of the screening of waste was studied using computational fluid dynamics and the drag coefficient for the model and the suction wind speed were obtained. The wind separator are developing by installing a cyclone air outlet to the suction blower impeller waste is selective in a way that does not pass the features and characteristics of the inlet pipe of the pressure loss and separation efficiency can have a significant impact on. Using Wind separator for selection of waste in the waste prior research on the aerodynamic properties are essential. For plastic cases, it is reasonable to take the drag coefficient between 0.8 and 1.0, and for cans, compression depending on whether the cans, the drag coefficient is in the range from 0.2 to 0.7. The separation efficiency of waste as change suction speed was the highest efficiency when the suction speed was 25~26 m/s. Shape of the inlet, depending on how the transfer pipe of the duct pressure loss occurs because the inlet velocity changes through the appropriate design standards to allow for continued research is needed.

Thermal-Hydraulic Analysis and Parametric Study on the Spent Fuel Pool Storage (기사용 핵연료 저장조에 대한 열수력 해석 및 관련 인자의 영향 평가)

  • Lee, Kye-Bock;Nam, Ki-Il;Park, Jong-Ryul;Lee, Sang-Keun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.19-31
    • /
    • 1994
  • The objective of this study is to conduct a thermal-hydraulic analysis on the spent fuel pool and to evaluate a parametric effect for the thermal-hydraulic analysis of spent fuel pool. The selected parameters are the Reynolds Number and the gap flow through the oater gap between fuel cell and fuel bundle. The simplified flow network for a path of fuel cells is used to analyze the natural circulation phenomenon. In the flow network analysis, the pressure drop for each assembly from the entrance of the fuel rack to the exit of the fuel assembly is balanced by the driving head due to the density difference between the pool fluid and the average fluid in each spent fuel assembly. The governing equations ore developed using this relation. But, since the parameters(flow rate, pressure loss coefficient, decay heat, density)are coupled each other, iteration method is used to obtain the solution. For the analysis of the YGN 3&4 spent fuel rack, 12 channels are considered and the inputs such as decay heat and pressure loss coefficient are determined conservatively. The results show the thermal-hydraulic characteristics(void fraction, density, boiling height)of the YGN 3&4 spent fuel rack. There occurs small amount of boiling in the cells. Fuel cladding temperature is lower than 343.3$^{\circ}C$. The evaluation of parametric effect indicates that flow resistances by geometric effect are very sensitive to Reynolds number in the transition region and the gap flow is negligible because of the larger flow resistance in the gap flow path than in the fuel bundle.

  • PDF

Aerodynamic Characteristics Analysis of Small Two-Stage Turbo Blower Using CFD (CFD를 이용한 소형 2단 터보블로워의 공력해석)

  • Seo, Seungjae;Ryu, Minhyoung;Cho, Leesang;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.326-335
    • /
    • 2014
  • Aerodynamic characteristics of the small two-stage turbo blower were investigated using commercial CFD tool(ANSYS CFX Ver. 14.5) in this paper. Turbo blower, which is a centrifugal type of turbomachinery, is used in various industries. It is used for application that required high static pressure rising at relatively small volumetric flow rate. In order to understand the mechanism of static pressure rising, the aerodynamic characteristics of the small two-stage turbo blower are analyzed at high rotating speed in this study. The k-${\omega}$ SST turbulence model, which is good at prediction of adverse pressure gradient flows, was applied. The CFD results of the turbo blower are validated by performance test. The static pressure rising of the turbo blower is nonlinearly increased over the first stage and the second stage. The secondary flow occurred at guide vanes, between the casing and the first impeller shroud, and the bottom of the impeller disk. As a result, It is required that whole fluid area is analyzed to predict aerodynamic characteristics of small two-stage turbo blower. and the result should be selected with considering for error from experiment and CFD.

Numerical modeling of debris flow in Mt. Umyeon using FLO-2D model (FLO-2D 모형을 이용한 우면산 토석류 수치모델링)

  • Kim, Seung-Eun;Paik, Joong-Cheol;Kim, Kyung-Suk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.105-105
    • /
    • 2012
  • 최근 우리나라는 집중호우로 인한 토석류의 발생이 현저하게 증가하고 있으며, 2002년 태풍 루사와 2003년 매미 그리고 2006년 7월 집중호우 등으로 인한 피해의 규모는 여러 조사와 문헌에서도 확인할 수 있다. 2011년 7월, 서울 우면산 일대에서는 집중호우로 인한 토석류가 발생하였으며, 16명의 인명손실을 포함한 큰 피해가 있었다. 우면산 토석류는 십여 개 지역에서 동시다발적으로 발생하였으며, 토석류 발생 유역 특성과 토석류의 유동특성을 분석하기 위한 현장 조사가 진행되었다. 조사한 자료에 따르면 우면산 일대의 일일 강우량은 서초 기상측정소를 기준으로 최대 24시간 누적 324mm 그리고 시간당 최대 68.5mm/hr를 기록하였다. 상업용 소프트웨어인 FLO-2D는 유사농도의 함수로서 점성(viscous)응력, 항복(yield)응력, 난류 및 분산(dispersive) 응력항을 포함하는 2차 유변학(quadratic rheology) 모델을 기본으로 사용하여 이류(mudflow)와 토석류(debris flow)를 모의할 수 있다. FLO-2D는 흐름의 운동량 및 에너지 보존을 고려하여 격자와 시간에 관계없이 유동심도, 속도, 압력을 예측할 수 있으며, 격자 기반의 모델로서 GIS 및 기타 응용 프로그램들과 연동이 쉽다는 장점이 있다. 그러나 하상침식에 의해 유발된 토석류의 체적 증가는 고려 할 수 없으므로 토석류의 전파 및 퇴적영역에서의 토석류 모의에만 사용할 수 있는 단점이 있다. 이 연구의 목적은 FLO-2D 소프트웨어를 이용하여 우면산에서의 토석류 현상을 재현하는 것이다. 우면산 일대에서 발생한 토석류 중 서초구 방배동의 래미안 아파트 부근에서 발생한 토석류에 대하여 수치지도(DEM)와 현장조사를 통해 얻은 지형자료, 해당 지역의 강우량 및 지질 특성 자료 등을 토대로 FLO-2D 모델을 적용하여 토석류의 흐름특성을 검토한다. 토석류 유동 및 퇴적에 대한 가용한 현장관측 자료와의 비교 분석을 통하여 토석류 특성 값을 산정하고, 모델의 적용성을 검증한다.

  • PDF