DOI QR코드

DOI QR Code

A Numerical Investigation on the Isentropic Efficiency of Steam Turbine Nozzle Stage with Different Nozzle Vane Thickness and Mass Flow Rate

증기 터빈 노즐 베인의 두께 변화와 유량별 등엔트로피 효율 변화에 관한 수치해석

  • Received : 2017.06.22
  • Accepted : 2017.07.28
  • Published : 2017.10.01

Abstract

In this study, the influence of mass flow rate on the isentropic efficiency of the steam turbine nozzle stage is investigated. A realistic three-dimensional numerical model, which is based on the compressible Navier-Stokes equations, is developed for the steam phase. The comprehensive conservation laws and a kinetic model for steam are investigated. With two different models for the three-dimensional geometry of the nozzle stage, the pressure and temperature distributions, velocity, Mach number. and Markov energy loss coefficient are calculated. A maximum efficiency of 96.66% is found at a mass flow rate of 0.9 kg/s in model A. In model B, a maximum efficiency of 97.32% is found at a rate of 1.6 kg/s. It is determined that the isentropic nozzle efficiency increases as the Markov energy loss coefficient decreases through a nearly linear relationship.

증기 질량 유량의 변화에 따른 증기 터빈 노즐 단의 등엔트로피 노즐 효율을 계산하였다. 증기상태에 관한 압축성 Navier-Stokes 방정식을 기반으로 삼차원 수치해석 모델이 개발되었다. 두 가지의 삼차원 노즐 형상으로 압력, 온도, 속도, 마하수, 그리고 Markov 에너지 손실 계수가 계산되었다. 노즐 블레이드의 두께가 15mm에서 45mm로 증가함에 따라 최대 효율의 질량 유량은 0.9kg/s에서 1.6kg/s로 증가하였으며 최대 등엔트로피 효율은 각각 96.66%, 97.32%로 계산되었다. 질량 유량에 따른 등엔트로피 노즐 효율과 Markov 에너지 손실 계수를 계산하여 Markov 에너지 손실 계수와 등엔트로피 노즐 효율이 선형적 반비례 관계가 있음을 규명하였다.

Keywords

References

  1. Kang, D. W., Shin, H. D., Kim, T. S., Hur, K. B. and Park, J. K., 2012, "Operating Characteristics Study of a Small Gas/Steam Turbine Combined System Using Biogas," The KSFM Journal of Fluid Machinery, Vol. 15, No. 3, pp. 51-56. https://doi.org/10.5293/kfma.2012.15.3.051
  2. Sakai, N., Harada, T. and Imai, Y., 2006, "Numerical Study of Partial Admission Stages in Steam Turbine (Efficiency Improvement by Optimizing Admission Arc Position)," JSME International Journal Series B, Vol. 49, No. 2, pp. 212-217. https://doi.org/10.1299/jsmeb.49.212
  3. Xue, R., Hu, C., Sethi, V., Nikolaidis, T. and Pilidis, P., 2016, "Effect of Steam Addition on Gas Turbine Combustor Design and Performance," Applied Thermal Engineering, Vol. 104, pp. 249-257. https://doi.org/10.1016/j.applthermaleng.2016.05.019
  4. Neckel, A. L. and Godinho, M., 2015, "Influence of Geometry on the Efficiency of Convergent-divergent Nozzles Applied to Tesla Turbines," Experimental Thermal and Fluid Science, Vol. 62, pp. 131-140. https://doi.org/10.1016/j.expthermflusci.2014.12.007
  5. Kim, S. C., Kim, U. and Ju, H., 2011, "Status and Principle of Coal Integrated Gasification Combined Cycle," Soc. Air-Cond. Refrig, Vol. 7, pp. 883-886.
  6. Dykas, S. and Wróblewski, W., 2012, "Numerical Modelling of Steam Condensing Flow in Low and High-pressure Nozzles," International Journal of Heat and Mass Transfer, Vol. 55, No. 21, pp. 6191-6199. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.041
  7. Esmaili, E., Mostafavi, E. and Mahinpey, N., 2016, "Economic Assessment of Integrated Coal Gasification Combined Cycle with Sorbent $CO_2$ Capture," Applied Energy, Vol. 169, pp. 341-352. https://doi.org/10.1016/j.apenergy.2016.02.035
  8. Abadi, S. N. R., Ahmadpour, A., Abadi, S. M. N. R. and Meyer, J. P., 2016, "CFD-based Shape Optimization of Steam Turbine Blade Cascade in Transonic Two Phase Flows," Applied Thermal Engineering, Vol. 112, pp. 1575-1589.
  9. Lee, B. E., 2015, Steam Turbine Thermal-Fluid Technologies, Vol. 2, Kyungmoon Books.
  10. Zhang, H., Xie, D., Yu, Y. and Yu, L., 2016, "Online Optimal Control Schemes of Inlet Steam Temperature during Startup of Steam Turbines Considering Low Cycle Fatigue," Energy, Vol. 117, pp. 105-115. https://doi.org/10.1016/j.energy.2016.10.075
  11. Wang, W., Gao, J., Shi, X. and Xu, L., 2013, "Cooling Performance Analysis of Steam Cooled Gas Turbine Nozzle Guide Vane," International Journal of Heat and Mass Transfer, Vol. 62, pp. 668-679. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.080
  12. Abadi, S. N. R., Kouhikamali, R. and Atashkari, K., 2015, "Two-fluid Model for Simulation of Supersonic Flow of Wet Steam Within High-pressure Nozzles," International Journal of Thermal Sciences, Vol. 96, pp. 173-182. https://doi.org/10.1016/j.ijthermalsci.2015.05.001
  13. Dykas, S., Majkut, M., Strozik, M. and Smolka, K., 2015, "Experimental study of condensing steam flow in nozzles and linear blade cascade," International Journal of Heat and Mass Transfer, Vol. 80, pp. 50-57. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.010
  14. Wang, C., Wang, L., Zhao, H., Du, Z. and Ding, Z., 2016, "Effects of Superheated Steam on Nonequilibrium Condensation in Ejector Primary Nozzle," International Journal of Refrigeration, Vol. 67, pp. 214-226. https://doi.org/10.1016/j.ijrefrig.2016.02.022
  15. Huh, J. S., Kang, Y. S., Rhee, D. H. and Seo, D. Y., 2015, "A Study on Variations of the Low Cycle Fatigue Life of a High Pressure Turbine Nozzle Caused by Inlet Temperature Profiles and Installation Conditions," Trans. Korean Soc. Mech. Eng. A, Vol. 39, No. 11, pp. 1145-1151. https://doi.org/10.3795/KSME-A.2015.39.11.1145
  16. Bak, J. G., Kim, J. U., Lee, S. W., Gang, Y. S., Cho, L. S. and Cho, J. S., 2014, "Comparative Study of Near-Wall Treatment Methods for Prediction of Heat Transfer over Gas Turbine Nozzle Guide Vane," Trans. Korean Soc. Mech. Eng. B, Vol. 38, No. 7, pp. 639-646. https://doi.org/10.3795/KSME-B.2014.38.7.639
  17. Mo, J. O., Kim, Y. T., Oh, C. and Lee, Y. H., 2011, "Influence of Performance and Internal Flow of a Radial Inflow Turbine with Variation of Vane Nozzle Exit Angles" Journal of the Korean Society of Marine Engineering Vol. 35.6, pp. 757-764. https://doi.org/10.5916/jkosme.2011.35.6.757
  18. Anderson Jr, J. D., 2010, "Fundamentals of Aerodynamics," Tata McGraw-Hill Education.
  19. Moran, M. J., Shapiro, H. N., Boettner, D. D. and Bailey, M. B., 2010, "Fundamentals of Engineering Thermodynamics," John Wiley & Sons.
  20. Xinggang, Y., Danmei, X., Cong, W., Chun, W. and Chu, N., 2014, "Numerical Investigation f Condensing Flow in the Last Stage of Low-pressure Nuclear Steam Turbine," Nuclear Engineering and Design, 275, pp. 197-204. https://doi.org/10.1016/j.nucengdes.2014.04.019