• Title/Summary/Keyword: 암반절취면

Search Result 20, Processing Time 0.018 seconds

A Remote Measurement Technique for Rock Discontinuity (암반 불연속면의 원격 영상측량 기법)

  • 황상기
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.205-214
    • /
    • 2001
  • A simple automated measuring method for planar or linear features on the rock excavation surface is presented. Attitude of the planar and linear feature is calculated from 3D coordinates of points on the structures. Spatial coordinates are calculated from overlapped stereo images. Factors used in the calculation are (1) local coordinates of the left and right images, (2) the focal length of cameras, and (3) the distance between two cameras. A simple image capturing device and an image treatment routine coded by Visual Basic and GIS components are constructed for the remote measurements, The methodology shows less than 1 cm error when a point is measured from 179 cm in distance. The methodology is tested at the excavation site in PaiChai University. Remotely measured result matches well with the manual measurement within the reasonable error range.

  • PDF

Comparative Study on the Maximum Principal Strain Due to Detonation Pattern at the Rock Surface (암반 절취면에서 기폭 패턴에 따른 최대주변형률의 비교)

  • Song, Jeong-Un;Park, Hoon;Kim, Seung-Kon
    • Explosives and Blasting
    • /
    • v.35 no.4
    • /
    • pp.10-18
    • /
    • 2017
  • In this study, Rock deformation at the artificially advanced face was investigated by using the finite element code relating to the split blasting conducted in urban area. The maximum principal strain according to the detonation pattern and the detonation delay time at the rock surface was compared with the modeled blast section. As a result, it was found that the maximum principal strain was observed a difference depending on the detonation pattern at the rock surface, and the detonation delay time was an important parameter in split blasting.

New Surveying Methods for Rock Slopes (암반사면의 새로운 조사기법)

  • Hwang, Sang-Gi
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1016-1019
    • /
    • 2009
  • Detailed survey of the rock mass is essential for design, construction and maintenance of rock slope. However, geological survey of poor outcrops and various geophysical aids provides limited information for slope engineering. Remote measurement system for excavation surface (Surface Mapper) and projection s/w for borehole data (Fracjection) are developed for further support of slope surveying. The Surface Mapper measures orientation of joint, fault, foliation on excavated rock surface and database the measured data. The Fracjection projects measurements in boreholes, which are obtained by BIPS, Televideo and DOM operation, to any expected excavation space. These methods promise new approaches for surveying, designing, constructing and maintaining processes of slope.

  • PDF

Rock Surface Protection According to Decrease of Blasting Vibration (진동저감 대책을 통한 절취면 보호)

  • Hong, Seong-Min;Song, Ha-Lim;Kang, Choo-Won;Chang, Ho-Min
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.21-28
    • /
    • 2012
  • Blasting methods are frequently used in case of forming slope artificially like slope cutting and open-cut method in the downtown area because of many economical and effective advantages. It is important that blasting work is carried out maintaining original strength of rock and not to damage rock face. And it is also considered that blasting method to decrease ground vibration is essential to the point of blast damages due to the ground vibration. In this study, to form a smooth plane of rock slope face, many trial blasts were carried out in this way that explosives were installed in detonating cord by equal interval in different charging method and stemming method. Using 4 blasting patterns in total 60 blast holes and 20 times of blasts were carried out. At the same time ground vibration measurements were carried out 15~102m away from the blast source, and total number of 310 data were obtained. Measured data for ground vibration velocity were analyzed so as to study blasting method to protect slope plane while decreasing blast vibration in an effective way.

Rock Slope Stability Analysis in Boeun Region Considering Properties of Discontinuities (불연속면의 특성은 고려한 보은지역 암반사면 안정성해석)

  • 이지수;박혁진;민경덕;구호본
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.601-615
    • /
    • 2001
  • The study area. Boeun-eup Boeun-kun, belongs to Ogchon metamorphic belt which is highly metamorphosed and consisted of complex geologic formations. Even though the geological structures and formations are complex and metamorphosed, the geological investigation and consideration are not enough and consequently the plane failure is occurred in the rock slope which was under construction on 1 : 0.5 gradient. This area is assessed as unstable and additional failure is possible by the discontinuity with same direction of failure surface. Therefore, the authors evaluate the slope stability using various analysis methods such as SMR, stereographic projection method, and the limit equilibrium analysis. In order to analyze stress redistribution and nonlinear displacement behavior caused by stress release, the authors conduct numerical analysis with UDEC and then the behavior of rock mass is analyzed after reinforcements are applied.

  • PDF

Estimation of Usable Cut-out Volume Considering the Structural and Engineering Properties of Rock Mass (암반의 구조적 및 공학적 특성을 고려한 가용절취량 산정)

  • 이창섭;홍관석;조태진
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.101-113
    • /
    • 2001
  • Structural and geological engineering properties of the rock mass distributed in the Yokmang mountain area were investigated to detenninc the usable cut-out volume and quarrying efficiency. The study area is located in the southern tip of the Yangsan fault system which controls the geological structure of the Kvungsang basin. As a result, the study area is mainly composed of andesicic. rhyolitic. and granitic rocks of the Cretaceous Kyungsang Supergroup and a series of right-handed strike-slip faults is developed along NNE-SSW direction. These regional faults significantly affect the spatial and meclwnical characteristics of joints such as spacing, frequency, and compressive strength. The joint frequency is highest along the fault zones and decreases toward the remote region. Based on the geological information obtained from the field survey, the detailed structure of the Yokmang mountain was analyzed and the volume of the rock mass was assessed. Considering the minimum rock block size required for the construction of a coastal dumping site, potential cut-out volume is then estimated to be 4,018,000m$^3$ the volume % of which is 48% of Yokmang mountain including the soil and weathered rock and 61% of the unweathered rock mass.

  • PDF

A case study on the stability analysis of rock slopes with discontinuities (절리암반 사면의 안정성 해석 사례)

  • Song, Won-Gyeong;Shin, Hui-Sun;Seon, Woo-Chun;Park, Chan
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2001.10a
    • /
    • pp.69-82
    • /
    • 2001
  • 본 연구는 절리가 발달한 고속도로 절취 사면들의 안정성을 검토하기 위하여 수행되었다. 물성시험을 바탕으로 한 지질 강도지수(GSI)를 이용하여 절리가 발달한 암반에 대한 최적의 물성을 구하는 과정을 제시하였다. 안정성 검토를 위해 FLAC에 의한 수치해석을 실시하였으며 이 때 사용한 모델은 절리 발달 상태가 균일하게 분포하였으므로 Ubiquitous Joint Model을 선정하였다. 해석은 건기와 우기의 경우로 나누어 실시하였는데 조건에 따라 절리면의 강도를 달리 적용하였다. 본 논문은 굴착 사면에서 쉽게 접할 수 있는 절리암반 환경에서 최적의 물성을 결정하고 이를 이용하여 안정성을 분석할 패 하나의 참고자료로 활용할 수 있을 것이다.

  • PDF

Comparison Analysis of Factor of Safety on Rock Slope in Boeun Region Using Distinct Element Method and Limit Equilibrium Method (개별요소법과 한계평형법을 이용한 보은지역 암반사면 안전율 비교해석)

  • 이지수;유광호;박혁진;민경덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.33-41
    • /
    • 2003
  • The large planar failure has occurred in a rock cut slope of highway construction site in Boeun. This area is considered to be unstable since the discontinuity, whose orientation is similar to the orientation of the failure plane, is observed in many areas. Therefore, several analysis techniques such as SMR, stereographic analysis, limit equilibrium, numerical analysis, which are commonly used in rock slope stability analysis, are adopted in this area. In order to analyze the stress redistribution and nonlinear displacement caused by cut, which are not able to be obtained in limit equilibrium method, DEM and shear strength reduction technique were used in this study. Then the factors of safety evaluated by shear strength reduction technique and limit equilibrium were compared. In addition, the factor of safety under fully saturated slope condition was calculated and subsequently, the effect of the reinforcement was evaluated.

Consideration of the Plane-Failure Condition of Rock Slopes according to Failure Characteristics in Korea (국내 붕괴특성을 고려한 암반사면의 평면파괴 조건 연구)

  • 황영철
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.295-303
    • /
    • 2002
  • The stability of rock slopes is closely related to the factors such as: type of rock, development of geological structures, weathering, characteristics of rock, and the shape of the geological features. When we design the rock slope, the slope stability is determined by the discontinuity causing the circular, plane or wedge failure. The failure happens when the slope is under the unstable geological condition. But in some cases, slope failure has occurred even though the slope is under stable geological conditions. In this respect, this paper presents the plane failure conditions for domestic rock slopes through research of sites where slope failure has occurred regardless of whether or not it satisfied the stable geological conditions.

Case Study on the Causes for the Failure of Large Scale Rock Mass Slope Composed of Metasedimentary Rocks (변성퇴적암류로 구성된 대규모 암반사면의 붕괴원인 분석에 관한 사례 연구)

  • Park, Boo-Seong;Jo, Hyun;Cha, Seung-Hun;Lee, Ki-Hwan
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.506-525
    • /
    • 2006
  • For the design of large scale rock slope which has complex formations and geological structures, generally, insufficiency of geotechnical investigations and laboratory tests are the main factors of slope failures doling construction. In such case, remedial measures to stabilize slope should be selected and applied through reliable investigations and analysis considering the geotechnical characteristics. The rock slope of this study, one of the largest cut slopes in Korea with a length of 520.0 m and maximum height of 122.0 m consists of metasedimentary rocks. And a case study on the causes of large-scale rock slope failure was carried out by analysis of landslides history and site investigations during construction. When the slope with the original design slope of 0.7: 1.0 (H:V) was partially constructed, the slope failure was occurred due to the factors such as poor conditions of rocks (weathered zone, coaly shale and fault shear zone), various discontinuities (joints, foliations and faults), severe rain storm and so on. The types of failures were rockfall, circular failure, wedge failure and the combination of these types. So, the design of slope was changed three times to ensure long-term slope stability. This paper is intended to be a useful reference for analyzing and estimating the stability of rock slopes whose site conditions are similar to those of this study site such as geological structures and geotechnical properties.