• Title/Summary/Keyword: 알칼리 활성 모르터

Search Result 6, Processing Time 0.023 seconds

Flow and Compressive Strength of Slag Mortars Activated by $MgNO_3$ ($MgNO_3$에 의해 활성된 슬래그 모르터의 유동성과 압축강도)

  • Sim, Jae-Il;Yang, Keun-Hyeok;Song, Jin-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.299-300
    • /
    • 2010
  • Flow and compressive strength of slag mortars activated by $MgNO_3$ were measured to examine the significance and limitation for the use of Mg-ion as an alkali-activator. The compressive strength of mortars tested was significantly dependent on the addition amount of $MgNO_3$, showing that 30~60% higher strength was developed in water-cured mortars than in air-cured mortars.

  • PDF

Properties of the Flowability and Strength of Cementless Alkali-Activated Mortar Using the Mixed Fly Ash and Ground Granulated Blast-Furnace Slag (플라이애쉬와 고로슬래그 미분말의 혼합 사용한 무시멘트 알칼리 활성 모르터의 유동성 및 강도 특성)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.114-121
    • /
    • 2010
  • Portland cement production is under critical review due to high amount of CO2 gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. However, most study deal only with alkali-activated ground granulated blast furnace slag or fly ash, as for the combined use of the both, little information is reported. In this study, we investigated the influence of mixture ratio of fly ash/ blast furnace slag tand curing condition on the flowability and compressive strength of mortar in oder to develop cementless alkali-activated concrete. In view of the results, we found out that the mixture ratio of fly ash/blast furnace slag always results to be significant factors. But the influence of curing temperature in the strength development of mortar is lower than the contribution due to other factors. At the age of 28days, the mixture 50% fly ash and 50% ground granulated blast furnace slag activated with 1:1 the mass ratio of 9M NaOH and sodium silicate, develop compressive strength of about 65 MPa under $20^{\circ}C$ curing.

  • PDF

An Experimental Study on Alkali-Silica Reaction of Alkali-Activated Ground Granulated Blast Furnace Slag Mortars (알칼리 활성 고로슬래그 미분말 모르터의 알칼리-실리카 반응에 관한 실험적 연구)

  • Kim, Young-Soo;Moon, Dong-Il;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • The purpose of this study was to investigate the expansion of alkali-activated mortar based on ground granulated blast furnace slag containing reactive aggregate due to alkali-silica reaction. In addition, this study was particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The experimental program included expansion measurement of the mortar bar specimens, as well as the determination of the morphology and composition of the alkali-silica reaction products by using scanning electron microscopy(SEM), and energy dispersive x-ray(EDX). The experiment showed that while alkali-activated ground granulated blast furnace slag mortars showed expansion due to the alkali-silica reaction, the expansion was 0.1% at Curing Day 14, showing that it is safe. After the accelerated test, SEM and BEM analysis showed the presence of alkali-silica gel and rim around the aggregate and cement paste. According to the EDX, the reaction products decreased markedly as alkali-activated ground granulated blast furnace slag was used. In addition, for the substitutive materials of mineral admixture, a further study on improving the quality of alkali-activated ground granulated blast furnace slag is needed to assure of the durability properties of concrete.

A Study on the Quality Properties of Alkali-activated cement free Mortar using Industrial by-products (산업부산물을 사용한 알칼리 활성 무시멘트 모르타르의 품질특성에 관한 연구)

  • Kwon, Yong-Hun;Kwon, Yeong-Ho;Lee, Dong-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • This study investigated quality properties of alkali activated cement free mortar using industrial by-product such as cement kiln dust(CKD), silica fume(SF) and quartz sand powder(SP) to compare with previous research about blast furnace slag(BS) and fly ash(FA). The results were as following. All materials were effective to increase compressive strength, however they showed different tendency on flowability. CKD and SP increased flowability, but on the other hand SF did not because it's blain was great difference with other materials. Flowability and compressive strength were related with grading distributions of binders because CKD, SP and SF which had small particle size filled up BS and FA. Application of industrial by-products with various grading distributions could be effective for the high early strength and flowability of alkali activated cement free mortar using BS.

Synthesis and Mechanical Properties of Alkali-Activated Slag Concretes (무시멘트 알칼리 활성 고로슬래그 콘크리트의 배합에 따른 재료 역학적 특성)

  • Song, Jin-Kyu;Lee, Kang-Seok;Han, Sun-Ae;Kim, Young-In
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1005-1008
    • /
    • 2008
  • The purpose of this study is to estimate basic mechanical properties of alkali-activated concretes based on GGBS(Ground Granulated Blast Furnace Slag). In this study, various mix ratios of alkali activated concretes based on sodium silicate and GGBS were set to evaluate concrete's compressive strengths and strains on the basis of results of existing alkali-activated cements and preliminary concrete tests, which were already performed by authors [Ref. 1]. Compressive strengths of concretes of ages 1, 3, 7, 28, 56 and 91 days were tested and investigated, respectively, and at early ages (< 7days) alkali-activated slag concrete (AASC) showed a high strength development, compared to that of Ordinary Portland Cement (OPC). A compressive strengths of AASC at age-3days range between 18 and 24 MPa, while those of OPC range 12 and 15 MPa. The stress-strain curve after maximum stress, on the other hand, is approximately reached at a compressive strain between 0.002 and 0.0025, which mechanical property is very similar to that of OPC.

  • PDF

Hydration Characteristics of Cement Containing Zeolite (제올라이트가 함유된 시멘트의 수화 특성)

  • Lee, Chang-Yong;Kim, Youn Cheol;Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.423-428
    • /
    • 2011
  • Hydration characteristics of cement containing zeolite mined at Daepo in Gyeongbuk province were studied for use as a mineral admixture. The cement paste containing zeolite was characterized by the measurement of heat evolution, XRD, EDS, nitrogen adsorption and mercury intrusion porosimetry. The cement paste containing zeolite exhibited tendencies toward acceleration of paste setting and promotion of cement hydration with the increase of zeolite content. The flow of mortar containing zeolite strongly reduced with increase of zeolite content. Compressive strength of the mortar containing zeolite increased very rapidly at an early age in comparison with plain mortar. These results would be related to aluminum species escaped from zeolite particles during the alkali dealumination of zeolite by the hydration process of cement.