• 제목/요약/키워드: 알고리즘 트레이딩

검색결과 23건 처리시간 0.02초

Performance Analysis of Trading Strategy using Gradient Boosting Machine Learning and Genetic Algorithm

  • Jang, Phil-Sik
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권11호
    • /
    • pp.147-155
    • /
    • 2022
  • 본 연구에서는 그래디언트 부스팅 기계학습과 유전 알고리즘을 이용하여 일별 주식 포트폴리오를 동적으로 구성하는 시스템을 구축하고 트레이딩 시뮬레이션을 통해 성능을 분석하였다. 이를 위해 유가증권시장과 코스닥시장에 상장된 종목들의 가격 데이터 및 투자자별 거래정보를 포함한 다양한 데이터를 수집하고, 전처리 과정과 변수가공을 통해 학습-예측에 이용될 변수들을 생성하였다. 첫 번째 실험에서는 예측정확도와 정밀도, 재현율 및 F1 점수 등 네 가지 지표를 활용하여 그래디언트 부스팅 기법들(XGBoost, LightGBM, CatBoost)의 성능을 비교 평가하였다. 두 번째 실험에서는 전 단계에서 선택된 LightGBM과 유전 알고리즘을 적용하여 상장 종목들의 일별 수익 여부를 학습-예측하였다. 그리고 예측된 수익 발생확률을 바탕으로 종목을 선별하여 트레이딩 시뮬레이션을 시행하고, CAGR, MDD, 사프지수 및 변동성 측면에서 코스피, 코스닥 지수와의 성능을 비교 평가하였다. 분석 결과, 제안된 전략들 모두 네 가지 성능평가 지표상에서 시장 평균을 넘어서는 것으로 나타났으며, 그래디언트 부스팅과 유전 알고리즘의 결합이 주식 가격 예측에 효과적으로 이용될 수 있음을 보여주었다.

선물시장의 시스템트레이딩에서 동적시간와핑 알고리즘을 이용한 최적매매빈도의 탐색 및 거래전략의 개발 (Finding the optimal frequency for trade and development of system trading strategies in futures market using dynamic time warping)

  • 이석준;오경주
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권2호
    • /
    • pp.255-267
    • /
    • 2011
  • 국내 정치적 사회적 경제적 요인 및 국제 정치 상황, 해외 경제 동향 등의 요인들을 비롯한 IMF이후의 금융시장 개방에 따른 외국투자자본의 유출입으로 인하여 한국 금융시장의 불확실성은 더욱 증가되었다. 특히 투자자들은 의사결정에 더 많은 혼돈을 겪게 되었고 투자 시 도움을 줄 수 있는 보다 유용한 도구들을 필요로 하게 되었다. 본 연구는 시스템 트레이딩을 이용하여 선물시장에서 거래 할 때 최적의 매매 타이밍을 알아보고 이에 적합한 전략을 알아보는 것이 목적이다. 패턴인식 알고리즘인 동적 시간 와핑 (DTW; Dynamic Time Warping) 알고리즘을 이용하여 빈도별 (10분, 30분, 60분, 일 별) 유사 패턴을 찾아내고 최적의 매매 타이밍을 분석한다. 이를 위해 주식시장의 대표적인 패턴들을 알아보고, 유사한 패턴을 보이는 기간을 DTW를 이용하여 빈도별로 분석한다. 유사한 패턴들의 검증을 위해 기술적 지표들의 개별 전략을 적용한 거래 시뮬레이션을 실시한다. 시뮬레이션 결과 대부분 30분 데이터에 적용된 전략들이 높은 수익률을 가져왔다.

러프집합을 활용한 KOSPI200 옵션시장의 변동성 회귀 전략 (Using rough set to develop a volatility reverting strategy in options market)

  • 강영중;오경주
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권1호
    • /
    • pp.135-150
    • /
    • 2013
  • 본 논문에서는 옵션시장에서의 변동성 회귀특성과 러프집합 알고리즘을 이용한 옵션전략을 개발하는 것을 제안한다. 이제까지 주식, 선물 시장에서는 다양한 연구가 선행되어 왔지만, 옵션시장에 대한 연구는 활발하지 않았다. 특히 고빈도 자료를 이용한 옵션 트레이딩 전략은 미미한 수준이다. 본 연구의 목적은 두가지로 구성된다. 첫째는 내재변동성 고평가, 저평가 상태를 측정하여 괴리가 발생했을 때 이익을 향유하는 변동성 회귀 모델을 구축하는 것이다. 둘째는 옵션트레이딩전략에 러프집합 알고리즘을 사용하여 부정확한 진입신호를 필터링하여 더 안정적인 수익을 추구하는 것이다. 이 논문의 요점은 옵션시장이 기초자산, 변동성, 이자율과 같은 다양한 요소에 영향을 받기 때문에, 변동성을 제외한 요인 (기초자산의 방향성)을 선물로 헤지하면서, 변동성괴리에 따른 이익만을 향유하는 것이다.

주식 시장 예측을 위한 π-퍼지 논리와 SVM의 최적 결합 (An Optimized Combination of π-fuzzy Logic and Support Vector Machine for Stock Market Prediction)

  • 다오두안훙;안현철
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.43-58
    • /
    • 2014
  • 최근 정보기술의 발전으로 복잡하고 방대한 양의 주가 데이터에 대한 실시간 분석이 가능해지면서 인공지능 기법을 활용해 주식 시장의 등락을 예측하고, 이를 기반으로 매매 거래를 수행하는 트레이딩 시스템에 대한 세간의 관심이 높아지고 있다. 본 연구는 이러한 트레이딩 시스템의 시장 예측 알고리즘으로 활용될 수 있는 새로운 주식 시장 등락 예측 모형을 제시한다. 본 연구의 제안 모형은 ${\pi}$-퍼지 논리를 이용해 모든 입력변수의 차원을 low, medium, high로 퍼지변환한 입력값을 대상으로 Support Vector Machine(SVM)을 적용하여 익일 시장의 등락을 예측하도록 설계되었다. 그런데 이 경우 입력변수의 수가 3배로 늘어나기 때문에, 적절한 입력변수의 선택이 요구된다. 이에 본 연구에서는 유전자 알고리즘을 활용하여 입력변수 선택 집합을 최적화하도록 하였으며, 동시에 ${\pi}$-퍼지 논리 및 SVM에 적용되는 조절 파라미터들의 값도 함께 최적화 하도록 하였다. 모형의 성능을 검증하기 위해, 본 연구에서는 지난 2004년부터 2013년까지의 10년치 국내 주식시장 데이터를 기반으로 한 KOSPI 200 지수의 등락 예측에 제안모형을 적용해 보았다. 이 때, 비교모형으로 로지스틱 회귀모형, 다중판별분석, 의사결정나무, 인공신경망, SVM, 퍼지SVM 등도 함께 적용시켜 성과를 정밀하게 검증해 보고자 하였다. 그 결과, 제안모형이 예측 정확도는 물론 투자수익률(Return on Investment) 측면에서도 다른 모든 비교모형들에 비해 월등히 우수한 성능을 보임을 확인할 수 있었다.

유전알고리즘 활용한 실시간 패턴 트레이딩 시스템 프레임워크 (Conceptual Framework for Pattern-Based Real-Time Trading System using Genetic Algorithm)

  • 이석준;정석재
    • 산업경영시스템학회지
    • /
    • 제36권4호
    • /
    • pp.123-129
    • /
    • 2013
  • The aim of this study is to design an intelligent pattern-based real-time trading system (PRTS) using rough set analysis of technical indicators, dynamic time warping (DTW), and genetic algorithm in stock futures market. Rough set is well known as a data-mining tool for extracting trading rules from huge data sets such as real-time data sets, and a technical indicator is used for the construction of the data sets. To measure similarity of patterns, DTW is used over a given period. Through an empirical study, we identify the ideal performances that were profitable in various market conditions.

구조적 변화 감지 과정이 포함된 페어트레이딩 알고리즘의 성과분석 (Performance of Pairs Trading Algorithm with the Implementation of Structural Changes Detection Procedure)

  • 정인곤;박대근;전덕빈
    • 한국경영과학회지
    • /
    • 제42권3호
    • /
    • pp.13-24
    • /
    • 2017
  • This paper aims to implement "structural changes detection procedure" in pairs trading algorithm and to show that the proposed approach outperforms the extant pair trading algorithm. Structural changes in pairs trading are defined in terms of changes in cointegrating factors and broken cointegration relationship. These changes are designed to test extant structural changes and unit root test methodologies. The simulation finds that expanding the changes in structure, increasing the mean reverting process of spread, and extending the consecutive days of broken cointegration will increase the performances of the proposed algorithm. Empirical study results are also consistent those of the simulation studies. The proposed algorithm outperforms the extant algorithm relative to risk and return given that the cumulative profit/loss has a significant upward-slope with minimal variance.

광역 객체 컴퓨팅 환경에서 이름/속성기반의 통합 바이딩 서비스 방안 (A Study on Integrated Binding Service Strategy Based on Name/property in Wide-Area Object Computing Environments)

  • 정창원;오성권;주수종
    • 정보처리학회논문지A
    • /
    • 제9A권2호
    • /
    • pp.241-248
    • /
    • 2002
  • 광역 컴퓨팅 시스템의 구조가 처음으로 네델란드 Vrije 대학의 분산 컴퓨팅 연구팀에서 명세화를 시키면서, 많은 연구개발자들은 분산객체의 광역 위치와 접속 서비스에 대한 연구들을 추진하고 있다. 이들 대부분의 연구들은 광역 컴퓨팅 사이트들 상에서 존재하는 비중복된 연산 객체들간에 바인딩 서비스에 대해서만 고려하고 있다. 그러나 지구상에 존재하는 수많은 객체들은 이름이나 속성에 의해 중복된 특성을 지닌다. 이러한 같은 특성을 갖는 객체들은 중복된 연산객체로 정의할 수 있다. 기존의 네이밍이나 트레이딩 기법으로는 독립적인 위치투명성의 결여로 중복된 연산객체들의 바인딩 서비스 지원이 불가능하다. 따라서 본 논문에서는 광역 컴퓨팅 환경에서 중복된 연산객체들의 위치관리 뿐 아니라 시스템들간의 부하균형화를 유지시키면서 퇴적객체의 선정을 통한 바인딩 서비스의 시간을 최소화 할 수 있는 새로운 모델을 제시한다.이 모델은 네이밍 및 트레이딩 기능들을 통합한 서비스에 의해 중복된 연산객체들에 대한 단일 객체핸들을 얻는 부분과, 이 객체핸들을 사용하여 노드관리자에 의해 중복객체들의 복수개의 컨택주소들을 제공하는 위치 서비스 부분으로 구성하였다. 위치 투명성을 제공하기 위해, 이 두 서비스는 서로 독립적으로 수행된다. 이러한 모델을 기반으로 분산객체의 광역 통합트리의 구조, 컨택주소들의 탐색 및 갱신 알고리즘을 기술하였다. 마지막으로 클라이언트 객체로부터 서로 다른 영역에 위치하는 분산객체들의 광역 바인딩을 제공할 수 있는 연합구조를 보였다.

애널리스트의 주가 예측이 결합된 로보어드바이저의 수익성 분석 (Robo-Advisor Profitability combined with the Stock Price Forecast of Analyst)

  • 김선웅
    • 한국융합학회논문지
    • /
    • 제10권9호
    • /
    • pp.199-207
    • /
    • 2019
  • 우리나라 주식시장에서 애널리스트들이 발표하는 주가 전망 자료를 입력변수로 활용한 로보어드바이저 포트폴리오의 수익성이 있는지를 분석하고자 하였다. 포트폴리오 구성을 위한 표본 주식은 업종을 대표하는 8개의 우량주이며, 분석 기간은 2003년부터 2019년까지의 17년 자료이다. 표본 주식에 대한 주가와 애널리스트 주가 전망 자료를 결합하는 블랙리터만모형을 통해 로보어드바이저 포트폴리오를 추천하고 벤치마크 대비 수익성을 비교하였다. 실증 분석 결과, 애널리스트들의 주가 전망 자료를 결합한 로보어드바이저 알고리즘의 수익성은 벤치마크 포트폴리오보다 연평균 1% 이상의 초과 수익을 시현하였다. 투자자들의 비판적 시각에도 불구하고 개별 종목에 대한 투자가 아닌 상대적 투자 비중을 구하는 로보어드바이저 관점에서는 애널리스트들의 주가 전망 자료가 경제적 가치를 보유하고 있음을 밝혔다. 향후 연구에서는 애널리스트들의 주가 전망 영향력이 대형주보다 더 클 것으로 예측되는 중 소형주를 포함한 로보어드바이저 포트폴리오의 수익성을 분석할 필요가 있다.

강화학습을 이용한 트레이딩 전략 (Trading Strategies Using Reinforcement Learning)

  • 조현민;신현준
    • 한국산학기술학회논문지
    • /
    • 제22권1호
    • /
    • pp.123-130
    • /
    • 2021
  • 최근 컴퓨터 기술이 발전하면서 기계학습 분야에 관한 관심이 높아지고 있고 다양한 분야에 기계학습 이론을 적용하는 사례가 크게 증가하고 있다. 특히 금융 분야에서는 금융 상품의 미래 가치를 예측하는 것이 난제인데 80년대부터 지금까지 기술적 및 기본적 분석에 의존하고 있다. 기계학습을 이용한 미래 가치 예측 모형들은 다양한 잠재적 시장변수에 대응하기 위한 모형 설계가 무엇보다 중요하다. 따라서 본 논문은 기계학습의 하나인 강화학습 모형을 이용해 KOSPI 시장에 상장되어 있는 개별 종목들의 주가 움직임을 정량적으로 판단하여 이를 주식매매 전략에 적용한다. 강화학습 모형은 2013년 구글 딥마인드에서 제안한 DQN와 A2C 알고리즘을 이용하여 KOSPI에 상장된 14개 업종별 종목들의 과거 약 13년 동안의 시계열 주가에 기반한 데이터세트를 각각 입력 및 테스트 데이터로 사용한다. 데이터세트는 8개의 주가 관련 속성들과 시장을 대표하는 2개의 속성으로 구성하였고 취할 수 있는 행동은 매입, 매도, 유지 중 하나이다. 실험 결과 매매전략의 평균 연 환산수익률 측면에서 DQN과 A2C이 대안 알고리즘들보다 우수하였다.

절대 유사 임계값 기반 사례기반추론과 유전자 알고리즘을 활용한 시스템 트레이딩 (System Trading using Case-based Reasoning based on Absolute Similarity Threshold and Genetic Algorithm)

  • 한현웅;안현철
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제26권3호
    • /
    • pp.63-90
    • /
    • 2017
  • Purpose This study proposes a novel system trading model using case-based reasoning (CBR) based on absolute similarity threshold. The proposed model is designed to optimize the absolute similarity threshold, feature selection, and instance selection of CBR by using genetic algorithm (GA). With these mechanisms, it enables us to yield higher returns from stock market trading. Design/Methodology/Approach The proposed CBR model uses the absolute similarity threshold varying from 0 to 1, which serves as a criterion for selecting appropriate neighbors in the nearest neighbor (NN) algorithm. Since it determines the nearest neighbors on an absolute basis, it fails to select the appropriate neighbors from time to time. In system trading, it is interpreted as the signal of 'hold'. That is, the system trading model proposed in this study makes trading decisions such as 'buy' or 'sell' only if the model produces a clear signal for stock market prediction. Also, in order to improve the prediction accuracy and the rate of return, the proposed model adopts optimal feature selection and instance selection, which are known to be very effective in enhancing the performance of CBR. To validate the usefulness of the proposed model, we applied it to the index trading of KOSPI200 from 2009 to 2016. Findings Experimental results showed that the proposed model with optimal feature or instance selection could yield higher returns compared to the benchmark as well as the various comparison models (including logistic regression, multiple discriminant analysis, artificial neural network, support vector machine, and traditional CBR). In particular, the proposed model with optimal instance selection showed the best rate of return among all the models. This implies that the application of CBR with the absolute similarity threshold as well as the optimal instance selection may be effective in system trading from the perspective of returns.