• Title/Summary/Keyword: 안정장비

Search Result 887, Processing Time 0.032 seconds

Theoretical and Numerical Study on the Support Pressure for Tunnel Face Stability in Shield TBM Construction (쉴드터널 시공 시 막장안정을 위한 지보압의 이론적.수치해석적 고찰)

  • Kim, Kwang-Jin;Koh, Sung-Yil;Choo, Seuk-Yeun;Kim, Jong-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.3
    • /
    • pp.197-204
    • /
    • 2006
  • A large sectional tunnelling method using Shield TBM is expected to be popular as domestic demand of long tunnel gets growing. Although a shield tunnelling method has been recognized as prominent method in consideration of stability and applicability in shallow and poor ground, the cases of accident and constructional trouble have been often happened due to unexpected poor ground condition, or selection and use of improper shield machine. Especially, troubling cases at tunnel face are frequently occurred, so supporting pressure control of tunnel face would be the main issue for securing safer and more efficient tunnel excavation using Shield TBM. In this point, we carried out the numerical feed-back analysis to compare the ground deformation pattern with theoretical result at tunnel face.

Numerical Analysis for Evaluation of Bearing Capacity on Soft Ground with Geotextile (Geotextile이 포설된 연약지반 지지력 평가를 위한 수치해석 비교분석)

  • Chae, Yu-Mi;Kim, Jae-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.217-223
    • /
    • 2020
  • As construction work on soft ground increases, many researchers have studied to secure the stability of trafficability with interest in construction safety accidents due to reinforcement work. Although the stability of soft ground is evaluated based on the allowable bearing capacity of theoretical equations proposed in the literature such as Yamanouchi and Meyerhof formulas, further numerical verification also requires comparison of the stress increase (Δσz) and deformation of the distributed contact pressure on the soft ground. In this study, the deformation of the soft ground is compared with the increasing the seam tensile strength of geotextile using the finite element analysis program, and the stress increase is investigated by variation of the distributed contact pressure by appling input data of case study.

Estimation of Process Window for the Determination of the Optimal Process Parameters in FDM Process (FDM 3D 프린터 최적 공정 변수 선정을 위한 공정 윈도우 평가법)

  • Ahn, Il-Hyuk
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.8
    • /
    • pp.171-177
    • /
    • 2018
  • In 3D printing technologies, many parameters should be optimized for obtaining a part with higher quality. FDM (fused deposition modeling) printer has also diverse parameters to be optimized. Among them, it can be said that nozzle temperature and moving speed of nozzle are fundamental parameters. Thus, it should be preceded to know the optimal combination of the two parameters in the use of FDM 3D printer. In this paper, a new method is proposed to estimate the range of the stable combinations of the two parameters, based on the single line quality. The proposed method was verified by comparing the results between single line printing and multi-layered single line printing. Based on the comparison, it can be said that the proposed method is very meaningful in that it has a simple test approach and can be easily implemented. In addition, it is very helpful to provide the basic data for the optimization of process parameters.

Gimbal System Control for Drone for 3D Image (입체영상 촬영을 위한 드론용 짐벌시스템 제어)

  • Kim, Min;Byun, Gi-Sig;Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2107-2112
    • /
    • 2016
  • This paper is designed to develop a Gimbal control stabilizer for drones Gimbal system control for drone for 3D image to make sure clean image in the shaking and wavering environments of drone system. The stabilizer is made of tools which support camera modules and IMU(Inertial Measurement Unit) sensor modules follow exact angles, which can brock vibrations outside of the camera modules. It is difficult for the camera modules to get clean image, because of irregular movements and various vibrations produced by flying drones. Moreover, a general PID controller used for the movements of rolling, pitching and yawing in order to control the various vibrations of various frequencies needs often to readjust PID control parameters. Therefore, this paper aims to conduct the Intelligent-PID controller as well as design the Gimbal control stabilizer to get clean images and to improve irregular movements and various vibrations problems referenced above.

Research on the Dispersion Stability and Scale up of Carbon Slurry Fuel (카본슬러리 연료의 분산안정성 개선 및 scale up 제조연구)

  • Jo, Min-Ho;Yang, Mun-Kyu;Lee, Ik-Mo;Cho, Joon-Hyun;Kwon, Tae-Soo;Jeong, Byung-Hun;Han, Jeong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.459-462
    • /
    • 2008
  • In manufacture of slurry fuel, the effects of process parameters on the carbon dispersion stability have been investigated. The particle size and contents of the carbon slurry taken from 3 (top, medium, bottom) positions in fuel reservoir were analyzed to estimate the dispersion of the carbon in Jet A-1. Through the application of various additives, it was found that NB463S84 additive showed the best dispersion and stability of carbon at accelerated gravity condition. The mixer performance was compared by the observation of height change of carbon-containing layer and measurement of particle sizes at the same conditions. Application of the mixing conditions obtained from the lab-scale to bench scale manufacture confirmed the practical feasibility of our research.

  • PDF

A Study of Dose Stability at Low Monitor Unit Setting for Multiple Irradiated Field (다중 조사면 치료 시 기계적 입력치(MU)에 따른 선량적 안정성에 대한 연구)

  • Kim Joo-Ho;Lee Sang-Gyu;Shin Hyun-Kyung;Lee Suk;Na Soo-Kyung;Cho Jung-Hee;Kim Dong-Wook
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.155-160
    • /
    • 2005
  • Purpose : Many authors have been introduced field in field technique and 3-D conformal radiotherapy that increased the tumor dose as well as decreased the dose of abutting critical organ. These technique have multiple beam direction and small beam segments even below 10 MU(monitor unit)for each field. we have confirmed the influence of low MU on dose output and beam stability. Materials and Methods : To study the dose output, the dose for each field was always 90MU, but it divided into different segment size: 1, 2, 3, 5, 10, 15 segments, 90, 45, 30, 18, 9, 6 MU the measurements were carried out for X-ray energy 4 MV, 6 MV, 10 MV of three LINAC(Varian 600C, 2100C, 2100C, 2100C/D), in addition each measurement was randomly repeated three times for each energy. To study the field symmetry and flatness, X-omat V films were irradiated. After being developed, films were scanned and analyzed using densitometer. Results : Influence of low MU on dose is slightly more increase output about $1.2{\sim}2.9%$ in cGy/mu than 90MU, but may not changed beam quality(flatness or symmetry), Output stability depends on dose rate(PRF)rather than beam energy, field size. Conclusion : Presented result are under the limits(out put<3%, flatness<${\pm}3%$, symmetry<2%). The 3 accelerators are safe to use and to perform conformal radiotherapy treatments in small segments, small MU around 10MU. but Even if the result presented here under the limits, continuous adjustments and periodic QA should be done for use of small MU

  • PDF

Statistical analysis of failures of a medical linear accelerator over ten years (선형가속기의 10년간 관리 자료를 바탕으로 한 통계분석)

  • Ju, Sang-Gyu;Huh, Seung-Jae;Han, Young-Yih;Seo, Jeong-Min;Kim, Won-Kyou;Kim, Tae-Jong;Park, Young-Hwan
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.158-161
    • /
    • 2004
  • In order for better management of a medical linear accelerator, the records of the operational failures of Varian CL2100C over ten years were analyzed. The failures were classified according to the involved functional subunits and each class was rated into three levels depending on operational conditions. The relationship between the failure rate and working ratio was investigated. Among the recorded failures ( total 587 failures), the most frequent failure, which was 20% of the total. was observed in the parts related to the collimation system including monitor chamber. Regrading to the operational conditions, the 2nd level of failures, that temporally interrupted treatments, was the most frequent. The 3rd level of failures, that interrupted treatment for more than several hours, was mostly caused by the accelerating subunit. The average life-time of a Klystron and Thyratron became shorter as the working ratio increased, which was 42 and 83% of the expected values, respectively. Recording equipment problems and failures in detail over a long period of time can provide a good knowledge of equipment function as well as the capability to forecast future failure. More rigorous equipment maintenance is required for old medical linear accelerator to avoid the serious failure in advance, and improve the patient treatment quality.

  • PDF

Fatigue analysis for structural stability review of TBM cutterhead (TBM 커터헤드의 구조안정성 검토를 위한 피로해석)

  • Choi, Soon-Wook;Kang, Tae-Ho;Lee, Chulho;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.529-541
    • /
    • 2020
  • Although TBM's cutterhead requires design review for fatigue failure due to wear-induced section loss as well as heavy load during excavation, it is difficult to find a case of fatigue analysis for TBM cutterhead at present. In this study, a stress-life design review was conducted on cutter heads with a diameter of 8.2 m using S-N curves as a safety life design concept. Also, we introduced the fatigue design method of construction equipment and the method of assessing fatigue damage and explained the results of the fatigue analysis on the TBM cutter head with a diameter of 8.2 m. The S-N curve has been shown to play a key role in fatigue design and can also be used to assess how much fatigue damage a structure is suffering from at this point in time. In the future, it is necessary to find out when fatigue problems occur during using the equipment and when it is good to conduct safety inspections of the equipment.

Analysis on the efficiency of underwater SPT module and stability for seabed type geotechnical investigation equipment (무인 착저식 지반조사 장비의 안정성 검토 및 수중 SPT효율 분석)

  • Kim, Woo-Tae;Jang, In-Sung;Ko, Jin-Hwan;Shin, Chang-Joo;Kwon, O-Soon;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1778-1785
    • /
    • 2014
  • In order to construct offshore structures safely, geotechnical investigation should be carried out with high accuracy. Up to now, onshore geotechnical investigation equipments installed on the barge are used for offshore geotechnical investigation. In this case, many limitations can be confronted such as deep water depth, high wave, strong current, severe wind and so on. For the safe and economic offshore geotechnical investigation with high precision, a seabed type unmanned automated site investigation equipment is developed. It can be operated remotely underwater conditions with 100m water depth and can explore the ground depth of 50m. Also, the standard penetration test (SPT), soil boring, soil sampling and rock coring can be possible using the equipment. Numerical analysis was conducted to secure the stability of the equipment against current of 4 knot. Energy efficiency of SPT apparatus which is attached to the equipment shows 78% in average.

A Study on the Calculation of Cavity Filling Amount Using Ground Penetrating Radar and Cavity Shaping Equipment (지표투과레이더와 공동형상화 장비를 이용한 공동채움량 산정 연구)

  • Hong, Gigwon;Kim, Sang Mok;Park, Jeong Jun
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.2
    • /
    • pp.261-268
    • /
    • 2022
  • Purpose: In the case of cavity discovered by ground penetrating radar exploration, it is necessary to accurately predict the filling amount in the cavity in advance, fill the cavity sufficiently and exert strength to ensure stability and prevent ground subsidence. Method: The cavity waveform analysis method by GPR exploration and the method using the cavity shape imaging equipment were performed to measure the cavity shape with irregular size and shape of the actual cavity, and the amount of cavity filling of the injection material was calculated during rapid restoration. Results: The expected filling amount was presented by analyzing the correlation between the cavity size and the filling amount of injection material according to the cavity scale and soil depth through the method by GPR exploration and the cavity scale calculation using the cavity shaping equipment. Conclusion: The cavity scale measured by the cavity imaging equipment was found to be in the range of 20% to 40% of the cavity scale by GPR exploration. In addition, the filling amount of injection material compared to the cavity scale predicted by GPR exploration was in the range of about 60% to 140%, and the filling amount of the injection material compared to the cavity size by the cavity shaping equipment was confirmed to be about 260% to 320%.