• Title/Summary/Keyword: 안전한 활용

Search Result 8,302, Processing Time 0.037 seconds

Scenario Analysis, Technology Assessment, and Policy Review for Achieving Carbon Neutrality in the Energy Sector (에너지 부문의 탄소중립 달성을 위한 국내외 시나리오 분석 및 기술, 정책현황 고찰)

  • Han Saem Park;Jae Won An;Ha Eun Lee;Hyun Jun Park;Seung Seok Oh;Jester Lih Jie Ling;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.496-504
    • /
    • 2023
  • Countries worldwide are striving to find new sources of sustainable energy without carbon emission due to the increasing impact of global warming. With the advancement of the fourth industrial revolution on a global scale, there has been a substantial rise in energy demand. Simultaneously, there is a growing emphasis on utilizing energy sources with minimal or zero carbon content to ensure a stable power supply while reducing greenhouse gas emissions. In this comprehensive overview, a comparative analysis of carbon reduction policies of government was conducted. Based on international carbon neutrality scenarios and the presence of remaining thermal power generation, it can be categorized into two types: "Rapid" and "Safety". For the domestic scenario, the projected power demand and current greenhouse gas emissions in alignment with "The 10th Basic Plan for Electricity Supply and Demand" was examined. Considering all these factors, an overview of the current status of carbon neutrality technologies by focusing on the energy sector, encompassing transitions, hydrogen, transportation and carbon capture, utilization, and storage (CCUS) was offered followed by summarization of key technological trends and government-driven policies. Furthermore, the central aspects of the domestic carbon reduction strategy were proposed by taking account of current mega trends in the energy sector which are highlighted in international scenario analyses.

A Study on the Trust Mechanism of Online Voting: Based on the Security Technologies and Current Status of Online Voting Systems (온라인투표의 신뢰 메커니즘에 대한 고찰: 온라인투표 보안기술 및 현황 분석을 중심으로)

  • Seonyoung Shim;Sangho Dong
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.47-65
    • /
    • 2023
  • In this paper, we investigate how the online voting system can be a trust-based system from a technical perspective. Under four principles of voting, we finely evaluate the existing belief that offline voting is safer and more reliable than online voting based on procedural processes, technical principles. Many studies have suggested the ideas for implementing online voting system, but they have not attempted to strictly examine the technologies of online voting system from the perspective of voting requirements, and usually verification has been insufficient in terms of practical acceptance. Therefore, this study aims to analyze how the technologies are utilized to meet the demanding requirements of voting based on the technologies proven in the field. In addition to general data encryption, online voting requires more technologies for preventing data manipulation and verifying voting results. Moreover, high degree of confidentiality is required because voting data should not be exposed not only to outsiders but also to managers or the system itself. To this end, the security techniques such as Blind Signature, Bit Delegation and Key Division are used. In the case of blockchain-based voting, Mixnet and Zero-Knowledge Proof are required to ensure anonymity. In this study, the current status of the online voting system is analyzed based on the field system that actually serves. This study will enhance our understanding on online voting security technologies and contribute to build a more trust-based voting mechanism.

A Study on the Status and Direction of the Nursing Hospital Certification System (요양병원 인증제도의 현황과 방향에 대한 연구)

  • Park, Jong-won
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.145-154
    • /
    • 2022
  • This study briefly compares the first-cycle certification of nursing hospitals with the second-cycle certification, reviews the changes and achievements of the second-cycle certification and the third-cycle certification, and examples of challenges and solutions in the process of preparing the third-cycle certification. In this study, it is suggested as follows. First, in order to see the practical effect of certification intended by the government, the exhibition is prepared in a short period of time before certification. Second, after the implementation of the nursing hospital certification system, research on the hospital performance of the medical institution certification system is insufficient in terms of quality and quantity. Therefore, in order to see the effect on the certification system, various research support is also required so that research on this can be actively conducted. Third, design certification standard guidelines from a long-term perspective so that the standard guidelines for certification do not change significantly, and certify not only the guidelines but also individual standards and forms that can be used by medical institutions. Fourth, in the four-cycle certification, accurate and realistic guidelines for infection control and quarantine ward operation support should be developed. The importance of managing infectious diseases will be highlighted in the future due to COVID-19. Fifth, medical institutions can improve the quality of medical care in nursing hospitals and have competitiveness if their daily activities, not short-term certification preparation, are carried out in accordance with certification standards, which affects performance. Sixth, when preparing for certification, nursing hospital officials have problems in organizing documents or processing administratively in the short term as in the past. This is also based on the certification criteria for the usual business process.

A Validation Study of the Korean Version of the Workplace Intergenerational Climate Scale(K-WICS) (한국판 세대친화적 조직문화척도(K-WICS) 타당화 연구)

  • Seoyeong Jeong;Hee Woong Park;Young Woo Sohn
    • Korean Journal of Culture and Social Issue
    • /
    • v.29 no.4
    • /
    • pp.429-453
    • /
    • 2023
  • Due to recent demographic changes, employees from diverse generations now work together in organizations. Thus, there is a need for research on intergenerational cooperation. However, the lack of valid and reliable measures to capture intergenerational climate in the workplace is an obstacle to research. Therefore, we translated the Workplace Intergenerational Climate Scale(WICS) into Korean and validated it with a sample of 1,052 Korean full-time employees. Firstly, we conducted an exploratory factor analysis by using sample 1(N = 460) and revealed a five-factor solution. Secondly, the confirmatory factor analysis(sample 2; N = 592) showed a good model fit of the correlated five-factor model. Thirdly, the scale's discriminant and convergent validity was supported by negative correlations with four types of existing ageism scales and by positive correlations with trust, organizational commitment, work engagement, psychological safety, intention to remain, job satisfaction, and communication satisfaction. Moreover, it further demonstrated significant incremental validity in predicting positive outcome variables even when controlling for pre-existing agism scales. Lastly, we confirmed strict measurement invariance of the scale between the age groups(below 40 versus above 40). The findings support the reliability and validity of the Korean version of WICS among Korean employees. The scale will be broadly applied to measure intergenerational climate of organizations and provide practical implications for HR management.

Assessment of soil moisture-vegetation-carbon flux relationship for agricultural drought using optical multispectral sensor (다중분광광학센서를 활용한 농업가뭄의 토양수분-식생-이산화탄소 플럭스 관계 분석)

  • Sur, Chanyang;Nam, Won-Hob
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.721-728
    • /
    • 2023
  • Agricultural drought is triggered by a depletion of moisture content in the soil, which hinders photosynthesis and thus increases carbon dioxide (CO2) concentrations in the atmosphere. The aim of this study is to analyze the relationship between soil moisture (SM) and vegetation activity toward quantifying CO2 concentration in the atmosphere. To this end, the MODerate resolution imaging spectroradiometer (MODIS), an optical multispectral sensor, was used to evaluate two regions in South Korea for validation. Vegetation activity was analyzed through MOD13A1 vegetation indices products, and MODIS gross primary productivity (GPP) product was used to calculate the CO2 flux based on its relationship with respiration. In the case of SM, it was calculated through the method of applying apparent thermal inertia (ATI) in combination with land surface temperature and albedo. To validate the SM and CO2 flux, flux tower data was used which are the observed measurement values for the extreme drought period of 2014 and 2015 in South Korea. These two variables were analyzed for temporal variation on flux tower data as daily time scale, and the relationship with vegetation index (VI) was synthesized and analyzed on a monthly scale. The highest correlation between SM and VI (correlation coefficient (r) = 0.82) was observed at a time lag of one month, and that between VI and CO2 (r = 0.81) at half month. This regional study suggests a potential capability of MODIS-based SM, VI, and CO2 flux, which can be applied to an assessment of the global view of the agricultural drought by using available satellite remote sensing products.

A Study on Implementation of Indoor Positioning Simulator through Indoor Positioning API Development (실내측위 API개발을 통한 실내측위 시뮬레이터 구현에 관한 연구)

  • Shin, Chang Soo;Kim, Sung Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.873-881
    • /
    • 2023
  • The evolution of civil engineering technology, exemplified by recent milestones like the completion of the Gangnam Global Business Center (GBC), has fostered the construction of expansive civil and architectural structures both above and below the earth's surface. This surge in construction necessitates a commensurate advancement in research and technology pertaining to safety protocols applicable to these vast edifices. Such protocols encompass a spectrum of concerns, ranging from the preemptive mitigation of accidents to the effective management of exigencies such as fires. As the trajectory of construction endeavors continues unabated, encompassing both subterranean and elevated domains, a concomitant imperative emerges to refine the methodologies underpinning precise indoor positioning. To address this need, an innovative web-based simulator has been devised to emulate indoor positioning scenarios for rigorous testing. This research further entails the development of an indoor positioning data Application Programming Interface (API) fortified by Geographic Information System (GIS) spatial operation techniques. This API is anchored in the construction of intricate test data, centered on the spatial layout of building 13 at the Electronics and Telecommunications Research Institute (ETRI). Consequently, the study renders feasible the expeditious provisioning of diverse signal-based and image-based spatial information, pivotal for enhancing the navigational acumen of mobile devices. Path delineation, cellular signal mapping, landmark identification, and ancillary navigational aids are among the manifold datasets promptly furnished by the indoor positioning data API. In summation, this study engenders a crucial leap towards the fortification of safety protocols and navigational precision within the expansive confines of modern architectural wonders.

Mean Teacher Learning Structure Optimization for Semantic Segmentation of Crack Detection (균열 탐지의 의미론적 분할을 위한 Mean Teacher 학습 구조 최적화 )

  • Seungbo Shim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.113-119
    • /
    • 2023
  • Most infrastructure structures were completed during periods of economic growth. The number of infrastructure structures reaching their lifespan is increasing, and the proportion of old structures is gradually increasing. The functions and performance of these structures at the time of design may deteriorate and may even lead to safety accidents. To prevent this repercussion, accurate inspection and appropriate repair are requisite. To this end, demand is increasing for computer vision and deep learning technology to accurately detect even minute cracks. However, deep learning algorithms require a large number of training data. In particular, label images indicating the location of cracks in the image are required. To secure a large number of those label images, a lot of labor and time are consumed. To reduce these costs as well as increase detection accuracy, this study proposed a learning structure based on mean teacher method. This learning structure was trained on a dataset of 900 labeled image dataset and 3000 unlabeled image dataset. The crack detection network model was evaluated on over 300 labeled image dataset, and the detection accuracy recorded a mean intersection over union of 89.23% and an F1 score of 89.12%. Through this experiment, it was confirmed that detection performance was improved compared to supervised learning. It is expected that this proposed method will be used in the future to reduce the cost required to secure label images.

Survey of coastal topography using images from a single UAV (단일 UAV를 이용한 해안 지형 측량)

  • Noh, Hyoseob;Kim, Byunguk;Lee, Minjae;Park, Yong Sung;Bang, Ki Young;Yoo, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1027-1036
    • /
    • 2023
  • Coastal topographic information is crucial in coastal management, but point measurment based approeaches, which are labor intensive, are generally applied to land and underwater, separately. This study introduces an efficient method enabling land and undetwater surveys using an unmanned aerial vehicle (UAV). This method involves applying two different algorithms to measure the topography on land and water depth, respectively, using UAV imagery and merge them to reconstruct whole coastal digital elevation model. Acquisition of the landside terrain is achieved using the Structure-from-Motion Multi-View Stereo technique with spatial scan imagery. Independently, underwater bathymetry is retrieved by employing a depth inversion technique with a drone-acquired wave field video. After merging the two digital elevation models into a local coordinate, interpolation is performed for areas where terrain measurement is not feasible, ultimately obtaining a continuous nearshore terrain. We applied the proposed survey technique to Jangsa Beach, South Korea, and verified that detailed terrain characteristics, such as berm, can be measured. The proposed UAV-based survey method has significant efficiency in terms of time, cost, and safety compared to existing methods.

Seismic Impact Analysis of Buried Citygas Pipes through Structural Analysis (구조해석을 통한 도시가스 매설배관의 지진 영향 분석)

  • Yoon Ho Jo;Maria Choi;Ju An Yang;Sang Il Jeon;Ji Hoon Jeon
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2023
  • Earthquakes are one of the most important disasters affecting underground structures. Urban gas underground pipes may cause safety problems of structures in the event of an earthquake. Since Korea began digital observation, the number of earthquakes has been steadily increasing. The seismic design standard for urban gas pipes was established in 2008, but it is difficult to estimate the impact of pipes in the event of an earthquake based on the installation of pipes. In this study, structural analysis was performed on PE (polyethylene pipe) pipes and PLP (polyethylene coated steel pipe) pipes, which are mainly used as buried pipes in Korea, according to environmental and pipe variables in the event of an earthquake. This study sought to find the variables of the most vulnerable buried pipe by modeling pipes through Computer Aided Engineering (CAE) and generating displacement on the ground. Through this study, it was confirmed that the larger the elastic modulus of the soil, the deeper the buried depth, the smaller the tube diameter, and the higher the pressure, the more PLP pipes are affected by earthquakes than PE. Based on these results, the vulnerable points of buried urban gas pipes are inferred and used for special inspections of buried pipes in the event of an earthquake.

Analysis of Dog-Related Outdoor Public Space Conflicts Using Complaint Data (민원 자료를 활용한 반려견 관련 옥외 공공공간 갈등 분석)

  • Yoo, Ye-seul;Son, Yong-Hoon;Zoh, Kyung-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.1
    • /
    • pp.34-45
    • /
    • 2024
  • Companion animals are increasingly being recognized as members of society in outdoor public spaces. However, the presence of dogs in cities has become a subject of conflict between pet owners and non-pet owners, causing problems in terms of hygiene and noise. This study was conducted to analyze public complaint data using the keywords 'dog,' 'pet,' and 'puppy' through text mining techniques to identify the causes of conflicts in outdoor public spaces related to dogs and to identify key issues. The main findings of the study are as follows. First, the majority of dog-related complaints were related to the use of outdoor public spaces. Second, different types of outdoor public spaces have different spatial issues. Third, there were a total of four topics of dog-related complaints: 'Requesting a dog playground', 'Raising safety issues related to animals', 'Using facilities other than dog-only areas', and 'Requesting increased park management and enforcement related to pet tickets'. This study analyzed the perceptions of citizens surrounding pets at a time when the creation and use of public spaces related to pets are expanding. In particular, it is significant in that it applied a new method of collecting public opinions by adopting complaint data that clearly presents problems and requests.