• Title/Summary/Keyword: 안전한 활용

Search Result 8,332, Processing Time 0.031 seconds

Development of an Evaluation Model for the Implementation of IMO Instruments (IMO 협약이행에 대한 평가모델 개발)

  • Choi, Choong-Jung;Jung, Jung-Sik;An, Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.542-548
    • /
    • 2022
  • In order to reduce marine accidents, each contracting Government needs to implement the instruments enacted and amended by the International Maritime Organization (IMO). The III Code requires each administration of the government to have a system for improvement through periodic review and evaluation and to include performance indicators in its evaluation methods. Thus, each IMO Member State needs to develop its own performance indicators. The purpose of this paper is to develop and present an evaluation model using the Balanced Scorecard (BSC) and Key Performance Indicators (KPI) in order to quantify and evaluate the level of implementation of the instruments by the administrations. From the perspective of 'III-BSC', which applies the BSC concept to the III code requirements, the Critical Success Factors (CSF) that must be secured to achieve the established vision were drawn up, and candidate KPIs for each evaluation area were developed to measure the derived key success factors and an initial study model was designed composed of four levels. The validity of the KPIs was verified and the study model was finalized using the survey design using the SMART technique. Furthermore, based on the developed study model, an evaluation model for the implementation of the BSC-based IMO instruments was developed by deriving the weights of elements for each level through AHP analysis. The developed evaluation model is expected to contribute toward improving the administrations' level of implementation of the IMO instruments as a tool for quantitatively grasping the level of performance of the implementation.

Evaluating the Efficiency of Personal Information Protection Activities in a Private Company: Using Stochastic Frontier Analysis (개인정보처리자의 개인정보보호 활동 효율성 분석: 확률변경분석을 활용하여)

  • Jang, Chul-Ho;Cha, Yun-Ho;Yang, Hyo-Jin
    • Informatization Policy
    • /
    • v.28 no.4
    • /
    • pp.76-92
    • /
    • 2021
  • The value of personal information is increasing with the digital transformation of the 4th Industrial Revolution. The purpose of this study is to analyze the efficiency of personal information protection efforts of 2,000 private companies. It uses a stochastic frontier approach (SFA), a parametric estimation method that measures the absolute efficiency of protective activities. In particular, the personal information activity index is used as an output variable for efficiency analysis, with the personal information protection budget and number of personnel utilized as input variables. As a result of the analysis, efficiency is found to range from a minimum of 0.466 to a maximum of 0.949, and overall average efficiency is 0.818 (81.8%). The main causes of inefficiency include non-fulfillment of personal information management measures, lack of system for promoting personal information protection education, and non-fulfillment of obligations related to CCTV. Policy support is needed to implement safety measures and perform personal information encryption, especially customized support for small and medium-sized enterprises.

Using Text Mining for the Analysis of Research Trends Related to Laws Under the Ministry of Oceans and Fisheries (텍스트 마이닝을 활용한 해양수산부 법률 관련 연구동향 분석연구)

  • Hwang, Kyu Won;Lee, Moon Suk;Yun, So Ra
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.549-566
    • /
    • 2022
  • Recently, artificial intelligence (AI) technology has progressed rapidly, and industries using this technology are significantly increasing. Further, analysis research using text mining, which is an application of artificial intelligence, is being actively developed in the field of social science research. About 125 laws, including joint laws, have been enacted under the Ministry of Oceans and Fisheries in various sectors including marine environment, fisheries, ships, fishing villages, ports, etc. Research on the laws under the Ministry of Oceans and Fisheries has been progressively conducted, and is steadily increasing quantitatively. In this study, the domestic research trends were analyzed through text mining, targeting the research papers related to laws of the Ministry of Oceans and Fisheries. As part of this research method, first, topic modeling which is a type of text mining was performed to identify potential topics. Second, co-occurrence network analysis was performed, focusing on the keywords in the research papers dealing with specific laws to derive the key themes covered. Finally, author network analysis was performed to explore social networks among authors. The results showed that key topics have been changed by period, and subjects were explored by targeting Ship Safety Law, Marine Environment Management Law, Fisheries Law, etc. Furthermore, in this study, core researchers were selected based on author network analysis, and the tendency for joint research performed by authors was identified. Through this study, changes in the topics for research related to the laws of the Ministry of Oceans and Fisheries were identified up to date, and it is expected that future research topics will be further diversified, and there will be growth of quantitative and qualitative research in the field of oceans and fisheries.

NDVI Based on UAVs Mapping to Calculate the Damaged Areas of Chemical Accidents (화학물질사고 피해영역 산출을 위한 드론맵핑 기반의 정규식생지수 활용방안 연구)

  • Lim, Eontaek;Jung, Yonghan;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1837-1846
    • /
    • 2022
  • The annual increase in chemical accidents is causing damage to life and the environment due to the spread and residual of substances. Environmental damage investigation is more difficult to determine the geographical scope and timing than human damage investigation. Considering the reality that there is a lack of professional investigation personnel, it is urgent to develop an efficient quantitative evaluation method. In order to improve this situation, this paper conducted a chemical accidents investigation using unmanned aerial vehicles(UAV) equipped with various sensors. The damaged area was calculated by Ortho-image and strength of agreement was calculated using the normalized difference vegetation index image. As a result, the Cohen's Kappa coefficient was 0.649 (threshold 0.7). However, there is a limitation in that analysis has been performed based on the pixel of the normalized difference vegetation index. Therefore, there is a need for a chemical accident investigation plan that overcomes the limitations.

Investigating on the Necessity of Integrated Project Management System for Effective Facility Management Utilizing Digital Twin Technology (디지털트윈을 활용한 건축물 시설안전대응 통합관리체계 구축 필요성에 관한 연구)

  • Yum, Sang-Guk;Park, Young-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.711-721
    • /
    • 2022
  • Due to a long-term pandemic of COVID-19 since 2019, our society finally goes into 'un-tact (non-contact) era' in earnest by increasing an importance of non-contacted activities which are able to live without contacts among people. Un-tact era has influenced to generate a huge structural change with digitalization in our daily life as well as industrial society based on digital twin as an essential technology. As a technology representing real world in virtual digital world by integrating various technologies applied to 4th industrial revolution, digital twin leads an innovation in industrial society with diverse industrial processes. But this technique isn't actively used across all industries due to structural limitations and environmental restrictions of digital twin. Especially, the field of construction and facility is necessary to use digital twin because it requires periodic managements of buildings in daily life and is directly connected with casualties in cases of disaster. But issues faced in reality are acting as an obstacle for applying digital twin. Therefore, this study suggests the necessity applying digital twin in facility safety response based on these issues and emphasizes active applications of digital twin by describing the expected effects being created. Furthermore, it connects to create demands of digital twin by overcoming current issues and suggesting high sustainable development.

Damage Evaluation of Adjacent Structures for Detonation of Hydrogen Storage Facilities (수소저장시설의 폭발에 대한 인접 구조물의 손상도 평가)

  • Jinwon Shin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.1
    • /
    • pp.61-70
    • /
    • 2023
  • This study presents an analytical study of investigating the effect of shock waves generated by the hydrogen detonation and damage to structures for the safety evaluation of hydrogen storage facilities against detonation. Blast scenarios were established considering the volume of the hydrogen storage facility of 10 L to 50,000 L, states of charge (SOC) of 50% and 100%, and initial pressures of 50 MPa and 100 MPa. The equivalent TNT weight for hydrgen detonation was determined considering the mechanical and chemical energies of hydrogen. A hydrogen detonation model for the converted equivalent TNT weight was made using design equations that improved the Kingery-Bulmash design chart of UFC 3-340-02. The hydrogen detonation model was validated for overpressure and impulse in comparison to the past experimental results associated with the detonation of hydrogen tank. A parametric study based on the blast scenarios was performed using the validated hydrogen detonation model, and design charts for overpressure and impulse according to the standoff distance from the center of charge was provided. Further, design charts of the three-stage structural damage and standoff distance of adjacent structures according to the level of overpressure and impact were proposed using the overpressure and impulse charts and pressure-impulse diagrams.

Development and application of automation algorithm for optimal parameter combination in two-dimensional flow analysis model (2차원 흐름해석모형의 매개변수 최적조합결정 자동화 알고리즘의 개발과 적용)

  • An, Sehyuck;Shin, Eun-taek;Song, Chang Geun;Park, Sungwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1007-1014
    • /
    • 2023
  • Two-dimensional flow analysis, a fundamental component of hydrodynamics, plays a pivotal role in numerically simulating fluid behavior in rivers and waterways. This modeling approach heavily relies on parameters such as eddy viscosity and roughness coefficient to accurately represent flow characteristics. Therefore, combination of appropriate parameters is very important to accurately simulate flow characteristics. In this study, an automation algorithm was developed and applied to find the optimal combination of parameters. Previously, when applying a two-dimensional flow analysis model, former researchers usually depend on the empirical approach, which causes many difficulties in finding optimal variable values. Using the experimental data, we tracked errors according to the combination of various parameters and applied the algorithm that can determine the optimal combination of parameters with the Python language. The automation algorithm can easily determine the most accurate combination by comparing the flow velocity error values among the two-dimensional flow analysis results among the combinations of 121 (11×11) parameters. In the perspective of utilizing automation algorithm, there is an expected high utility in promptly and straightforwardly determining the optimal combination of parameters with the smallest error.

An Exploratory Study on the Analysis of Characteristics of Pedestrian Accident Vulnerable Points using Road View: Focusing on Sasang-gu, Busan (로드뷰를 활용한 보행자 사고 취약 지점 특징 분석 탐색적 연구: 부산광역시 사상구를 중심으로)

  • Dong Kyu Lee;Jae Seon Kim;Kyung Soo Pyo;Min Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.351-368
    • /
    • 2024
  • Purpose: In general, traffic accidents occur sporadically, so there are various limitations in terms of time and cost when conducting field investigations to prepare prevention and prevention measures. In particular, with the transition to a non-face-to-face society after the COVID-19, there is a greater need to prepare a replacement for field surveys. Therefore, in this study, Roadview provided by various websites was used as an alternative to field surveys in Sasang-gu, Busan City. The possibility was evaluated. Method: The research method was to extract vulnerable points for traffic accidents that occurred between 2016 and 22 and analyze road views based on the field survey evaluation items provided in the Traffic Safety Diagnosis Guidelines. Result: The main result was that Sasang-gu was most vulnerable to accidents involving elderly pedestrians at Sasang-ro, Daedong-ro, and Hakjang-ro. As a result of a detailed analysis of vulnerable points through Road View, Sasang-ro needed control of commercial vehicles and protection of the transportation vulnerable in the market commercial area. Daedong-ro was vulnerable to illegal on-street parking and slope merging sections, and Hakjang-ro was vulnerable to roads that were prone to speeding. When evaluating the possibility of replacing Roadview's field survey based on the results of this analysis, Roadview was able to effectively evaluate most items, such as separation of sidewalks and the location and spacing of safety facilities. However, there were limitations in items such as actual measurement performance. Conclusion: In other words, the road view can replace most field surveys, and the actual measurement evaluation items can be judged to be useful as auxiliary data, resulting in time and cost savings and high efficiency.

Investigating Key Security Factors in Smart Factory: Focusing on Priority Analysis Using AHP Method (스마트팩토리의 주요 보안요인 연구: AHP를 활용한 우선순위 분석을 중심으로)

  • Jin Hoh;Ae Ri Lee
    • Information Systems Review
    • /
    • v.22 no.4
    • /
    • pp.185-203
    • /
    • 2020
  • With the advent of 4th industrial revolution, the manufacturing industry is converging with ICT and changing into the era of smart manufacturing. In the smart factory, all machines and facilities are connected based on ICT, and thus security should be further strengthened as it is exposed to complex security threats that were not previously recognized. To reduce the risk of security incidents and successfully implement smart factories, it is necessary to identify key security factors to be applied, taking into account the characteristics of the industrial environment of smart factories utilizing ICT. In this study, we propose a 'hierarchical classification model of security factors in smart factory' that includes terminal, network, platform/service categories and analyze the importance of security factors to be applied when developing smart factories. We conducted an assessment of importance of security factors to the groups of smart factories and security experts. In this study, the relative importance of security factors of smart factory was derived by using AHP technique, and the priority among the security factors is presented. Based on the results of this research, it contributes to building the smart factory more securely and establishing information security required in the era of smart manufacturing.

A Comparative Study between Vocational Training Using Virtual Reality and Traditional Training: Focusing on Industrial Cranes (가상현실을 활용한 직업훈련과 전통적인 훈련과의 비교연구: 산업용크레인을 중심으로)

  • Seong-Yeon Mun;Hyun-Jung Oh;Sang-Joon Lee
    • Journal of Practical Engineering Education
    • /
    • v.16 no.4
    • /
    • pp.529-540
    • /
    • 2024
  • In industrial sites, experiential virtual training contents are partially used to replace high-risk and high-cost training, and virtual training contents development is also becoming active along with the increasing demand for non-face-to-face industries. Existing studies mainly focused on quantitative research through surveys, and only measured the change in users' learning commitment. This study attempted to investigate the effect of the combination of theoretical education and virtual training on the improvement of actual job performance in a dual vocational training environment by conducting an experimental study. This study studied whether the combination of theoretical education and virtual training can improve the performance of vocational training in dual vocational training (comparative work and learning) in which companies and schools participate. The results of pre- and post-evaluation of vocational training using traditional vocational training and virtual training contents were compared with 24 vocational training trainees. As a result of the study, it was demonstrated that the outcome of virtual training education was higher than that of traditional vocational training, and the combination of virtual reality-based education was more effective in theoretical education. This study suggests that the virtual training content presents a new paradigm for industrial safety education, and through the interview results of trainees, it was confirmed that virtual training can lead to a change in attitude toward safety beyond just knowledge transfer. This contributes to the prevention of safety accidents in industrial sites and provides important implications for improving the quality of vocational training.