Journal of the Korea Society of Computer and Information
/
v.27
no.3
/
pp.1-12
/
2022
In the event of a maritime distress accident, rapid search and rescue operations using rescue assets are very important to ensure the safety and life of drowning person's at sea. In this paper, we analyzed the surface layer current in the northwest sea area of Ulleungdo by applying machine learning such as multiple linear regression, decision tree, support vector machine, vector autoregression, and LSTM to the meteorological information collected from the maritime observation buoy. And we predicted the drowning person's route at sea based on the predicted current direction and speed information by constructing each prediction model. Comparing the various machine learning models applied in this paper through the performance evaluation measures of MAE and RMSE, the LSTM model is the best. In addition, LSTM model showed superior performance compared to the other models in the view of the difference distance between the actual and predicted movement point of drowning person.
Journal of Korean Society of Coastal and Ocean Engineers
/
v.34
no.3
/
pp.47-57
/
2022
We carried out studies on prediction in concentration of dissolved oxygen (DO) with LSTM model and prediction in occurrence of hypoxia water mass (HWM) with decision tree. As results of study on prediction in DO concentration, a large number of Hidden node caused high complexity of model and required enough Epoch. And it was high accuracy in long Sequence length as prediction time step increased. The results of prediction in occurrence of HWM showed that the accuracy of nonHWM case was 66.1% in 30 day prediction, it was higher than 37.5% of HWM case. The reason is that the decision tree might overestimate DO concentration.
Over the past few years, IoT edges have begun to emerge based on new low-latency communication protocols such as 5G. However, IoT edges, despite their enormous advantages, pose new complementary threats, requiring new security solutions to address them. In this paper, we propose a cloud environment-based IoT edge architecture model that complements IoT systems. The proposed model acts on machine learning to prevent security threats in advance with network traffic data extracted from IoT edge devices. In addition, the proposed model ensures load and security in the access network (edge) by allocating some of the security data at the local node. The proposed model further reduces the load on the access network (edge) and secures the vulnerable part by allocating some functions of data processing and management to the local node among IoT edge environments. The proposed model virtualizes various IoT functions as a name service, and deploys hardware functions and sufficient computational resources to local nodes as needed.
Journal of Korea Society of Industrial Information Systems
/
v.29
no.5
/
pp.51-68
/
2024
To safely operate lithium-ion batteries that power mobile electronic devices, it is crucial to accurately predict the remaining useful life (RUL) of the battery. Recently, with the advancement of machine learning technologies, artificial intelligence (AI)-based RUL prediction models for batteries have been actively researched. However, existing models have limitations as the reasoning process within the models is not transparent, making it difficult to fully trust and utilize the predicted values derived from machine learning. To address this issue, various explainable AI techniques have been proposed, but these techniques typically visualize results in the form of graphs, requiring users to manually analyze the graphs. In this paper, we propose an explainable RUL prediction method for lithium-ion batteries that interprets the reasoning process of the prediction model in textual form using SHAP analysis based on large language models (LLMs). Experimental results using publicly available lithium-ion battery datasets demonstrated that the LLM-based SHAP analysis enabled us to concretely understand the model's prediction rationale in textual form.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.4
/
pp.467-473
/
2020
Recently, the number of traffic accidents has also increased with the increase in the penetration rate of cars in Korea. In particular, not only inter-vehicle accidents but also human accidents near crosswalks are increasing, so that more attention to traffic safety around crosswalks are required. In this paper, we propose a system for predicting the safety level around the crosswalk by recognizing an approaching vehicle and estimating the speed of the vehicle using NVIDIA Jetson Nano-class edge devices. To this end, various machine learning models are trained with the information obtained from deep learning-based vehicle detection to predict the degree of risk according to the speed of an approaching vehicle. Finally, based on experiments using actual driving images and web simulation, the performance and the feasibility of the proposed system are validated.
Recently, ground subsidence has been continuously occurring in downtown areas, threatening the safety of citizens. Various underground facilities such as water and sewage pipelines and communication pipelines are buried under the road. It is reported that the cause of ground subsidence is the deterioration of various facilities and the reckless development of the underground. In particular, it is known that the biggest cause of ground subsidence is the aging of sewage pipelines. As an existing study related to this, several representative factors of sewage pipelines were selected and a study to predict the risk of ground subsidence through statistical analysis has been conducted. In this study, a data SET was constructed using the characteristics of OO city's sewage pipe characteristics and ground subsidence data, The data set constructed from the characteristics of the sewage pipe of OO city and the location of the ground subsidence was used. The goal of this study was to present a classification model for the occurrence of ground subsidence according to the characteristics of sewage pipes through machine learning. In addition, the importance of each sewage pipe characteristic affecting the ground subsidence was calculated.
Park, Jae-Min;Shin, Dong-Ho;Kim, Hyun-Seop;Kim, Hyung-Hoon;Kim, Sang-Hoon
Annual Conference of KIPS
/
2019.10a
/
pp.1034-1037
/
2019
본 논문은 진공을 이용한 흡착방식과 바퀴형 이동방식을 사용하는 벽면 이동로봇의 구성과 로봇 내부에서의 균열검출 및 처리 프로세스에 관한 연구이다. 임베디드 시스템에서 기계학습을 이용한 균열검출을 구현하기 위해 YOLO v3를 수정하여 구동하였으며, 검출된 균열의 영상을 저장하고 위치 정보를 추정하였다. 또한, 균열 정보를 수집하기 위해 고정 IP를 갖는 서버를 구축하고 각 기기 간의 효율적인 통신 네트워크를 구성하였다. 본 기술은 균열검출 작업뿐만 아니라 보수작업에도 활용될 수 있어, 대형 구조물과 건축물 등의 안전진단뿐만 아니라 안전성 향상에 이바지할 수 있을 것으로 예상한다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.16-21
/
2021
소방 본부의 119 종합상황실에서는 24시간 국민의 안전을 위해 긴급 신고를 접수한다. 수보사 분들은 24시간 교대 근무를 하며 신고 전화에 접수 및 응대 뿐만 아니라 출동, 지휘, 관제 업무를 함께 수행한다. 이 논문에서는 이 같은 수보사의 업무 지원을 위해 우리가 구축한 음성 인식과 결합된 실시간 텍스트 분석 시스템에 대해서 소개하고, 출동 지령서 자동 작성을 위한 키워드 검출 및 대화 요약 및 개체명 인식에 기반한 대화 상태 추척 방법에 대해 설명하고자 한다. 대화 요약 기술은 음성 인식 결과를 실시간으로 분석하여 중요한 키워드의 검출 및 지령서 자동 작성을 위한 후처리를 수행하며, 문장 수준에서 개체명 인식 및 관계 분석을 통한 목적 대화의 대화 상태 추적을 수행한다. 이 같은 응용 시스템은 딥러닝 및 기계학습 기반의 자연어 처리 시스템이 실시간으로 텍스트 분석을 수행할 수 있는 기술 수준이 되었음을 보여주며, 긴급한 상황에서 많은 신고 전화를 접수하는 수보사의 업무 효율 증진 뿐만 아니라, 정확하고 신속한 위치 파악으로 신고자를 도와주어 국민안전 증진에 도움을 줄 수 있을 것으로 기대된다.
본 논문에서는 도로 영상에서 검출된 자동차 영상을 종류별 분류를 위해 효과적인 질감 특징정보 기반의 자동차 종류별 분류 방안을 제안한다. 제안한 연구에서는 운전자의 안전운전지원을 위해 도로상에서 검출된 자동차 영역과 자신의 차량과 거리를 추정하기 위해 검출된 자동차의 종류를 인식할 필요가 있다. 즉, 인식된 자동차의 종류에 따라 차량 간 거리를 추정에 필요한 파라미터로 사용할 수 있기 때문이다. 따라서 본 연구에서는 검출된 자동차 영상들로부터 GLCM(gray-level co-occurrence matrix)의 7가지의 특징정보들을 추출하고 SVM을 사용하여 학습 한 후 자동차의 종류(승용, 화물, 버스)를 분류하는 방법을 제안한다. GLCM은 영상이 가진 질감 정보를 효율적으로 분석함으로써 영역의 밝기 변화 정도, 거침 정도, 픽셀 분포 정도 등을 표현하기 때문에 영상내의 포함된 영역을 분류하는데 효과적이다. 제안한 방법을 실제 자동차 규모별 분류에 적용한 결과 약 83%의 분류 성공률을 제시하였다.
본 논문은 사람과 짐의 물체 감지를 위한 YOLO 모델을 활용하여 특정 공간 내 혼잡도를 측정하는 시스템을 제안한다. YOLO를 학습시켜 기차 내에서 사람 및 짐과 같은 객체를 탐지하는 모델을 만든다. 그리고 이 모델을 이용하여 기차 내에서 객체를 탐지하고, 객체의 위치와 개수 정보를 얻는다. 이렇게 얻은 정보를 기반으로, 혼잡도를 측정하기 위해 다양한 지표를 활용한다. 이를 인터페이스에 시각적으로 보여준다. 결과적으로, 제안된 시스템은 승객들의 안전과 편의를 보장하며, 특정 공간의 혼잡도 파악에 유용한 도구로 사용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.