본고에서는 아직도 연구지향의 성격을 띄고 있는 인공지능로보트의 시각시스템에 관해 기술하였고, 이들의 연구를 바탕으로 하여 needs에 답하는 형식인 응용지향인 산업용로보트의 시각시스템에 관해 언급하였다. 끝으로 필자의 연구실에서 발표한 인쇄악보의 인식에 관해 간단히 소개하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2001.12a
/
pp.113-116
/
2001
This paper describes an analysis of the music as a time series and the fuzzy logic-based modeling of it. All music is made up of a finite number of musical notations known as the musical symbols, such as clefs, staff, tine signature, notes, rests, etc. . The musical score uses musical symbols to present various characteristics, such as rhythm, melody, chord, etc,. for interpreting the music. In this paper, it is possible to transform the beat and pitch in the musical into time series from the viewpoint of recognizing beat and pitch of sounding tone at each time. On the basis of the identified features of the musical score, a musical score is represented as a time series and then is constructed to fuzzy logic-based model for predicting them. Examples are presented to illustrate the validity of the proposed method.
KIPS Transactions on Software and Data Engineering
/
v.8
no.1
/
pp.19-26
/
2019
In this paper, the classification performance of learning algorithms is compared for TAB digit recognition. The TAB digits that are segmented from TAB musical notes contain TAB lines and musical symbols. The labeling method and non-linear filter are designed and applied to extract fret digits only. The shift operation of the 4 directions is applied to generate more data. The selected models are Bayesian classifier, support vector machine, prototype based learning, multi-layer perceptron, and convolutional neural network. The result shows that the mean accuracy of the Bayesian classifier is about 85.0% while that of the others reaches more than 99.0%. In addition, the convolutional neural network outperforms the others in terms of generalization and the step of the data preprocessing.
Journal of the Korean Institute of Telematics and Electronics
/
v.22
no.5
/
pp.10-16
/
1985
In this paper, a computer vision system, which catches printed music score image using CCTV camera and microcomputer, and then recognizes the image and performs tar music with speaker, is discussed. Integral projection method is adopted for feature detection and recognition of the music score image. The range of recognition is con(ined to staffs, perpen-dicular lines and musical notes including chord notes among the various kinds of elements of music score. The practical recognition algorithm considering noises, the preprocessing processes getting rid of noises are also showed, and simple hardware system playing chord is made, In the results, good recognition ratio and performance are obtained.
Proceedings of the Korean Society of Computer Information Conference
/
2012.07a
/
pp.267-268
/
2012
본 논문에서는 Google사의 Project glass를 이용한 피아노 연습 어플리케이션을 제안한다. 하지만 아직 이 기기는 발매되지 않았기 때문에 안드로이드 모바일에서 제작중이다. 사용자악보를 database로 간단하게 관리하고, OpenCV라이브러리를 통해 실제 피아노의 위치와 건반을 인식하고, 손가락의 위치 파악과 소리 인식을 통하여 서로 인식한 정보의 일치여부를 확인한다. 그리고 증강현실 기술을 이용하여 게임적인 요소를 추가시켜서 보다 쉽고, 재미있게 실제 피아노 연습을 할 수 있다. 본 논문에서는 기존에 피아노 연주 연습하는 방식에서 IT기술을 접목시켜서, 교육과 기술발전에 기여할 수 있음을 보인다. 그리고 앞으로 영상처리 기술이 널리 사용될 것으로 예상되어 미리 기술을 학습하는 효과도 있다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.7
/
pp.1098-1101
/
2022
With the development of computer music notation programs, when drawing sheet music, it is often drawn using a computer. However, there are still many use of hand-written notations for educational purposes or to quickly draw sheet music such as listening and dictating. In previous studies, OMR focused on recognizing the printed music sheet made by music notation program. the result of handwritten OMR with camera is poor because different people have different writing methods, and lens distortion. In this study, as a pre-processing process for recognizing handwritten music sheet, we propose a method for recognizing a staff using linear regression and a method for recognizing a bar using CNN. F1 scores of staff recognition and barline detection are 99.09% and 95.48%, respectively. This methodologies are expected to contribute to improving the accuracy of handwriting.
In most pattern recognition and image understanding applications, images are degraded by noise and other distortions. Therefore, it is more relevant to decide how similar two objects are rather than to decide whether the two are exactly the same. In this paper, we propose a method for recognizing degraded symbols using a distance measure between two graphs representing the symbols. a symbol is represented as a graph consisting of nodes and edges based on the run graph concept. The graph is then transformed into a reference model graph with production rule containing the embedding transform. The symbols are recognized by using the distance measure which is estimated by using the number of production rules used and the structural homomorphism between a transformed graph and a model graph. the proposed approach is applies to the recognition of non-note musical symbols and the result are given.
Time-varying tempo of a song is one of the error sources for the identification of a note duration in automatic music recognition. This paper proposes an improved music transcription scheme equipped with the identification of note duration considering the time-varying tempo. In the proposed scheme the measures are found at first and the tempo, the playing time of each measure, is then estimated. The tempo is then used for resizing each IOI(Inter Onset Interval) length and considered to identify the accurate note duration, which increases the degree of correspondence to the music piece. In the experiment the proposed scheme found the accurate measure position for 14 monophonic children songs out of 16 ones recorded by men and women. Also, it achieved about 89.4% and 84.8% of the degree of matching to the original music piece for identification of note duration and pitch, respectively.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.280-282
/
1999
현존하는 클래식 음악에는 음악적, 심리적 작곡약속이 있다. 작곡약속을 악식(樂式) 혹은 음악형식(音樂形式)이라고 한다. 즉, 모든 악곡은 일정한 형식에 의하여 작곡된다. 이러한 이유로 악곡에서는 어떤 특징적인 note관계가 규칙적으로 반복해서 나타난다. 이러한 특성은 note간의 관계가 어떻게 변화하는가에 따라서, 악곡 전체에서 segment의 시작과 끝으로 인식되어진다. 본 논문에서는 악곡의 분석을 위해 실제 악보를 컴퓨터 데이터 형식으로 표현하기 위한 SFCM(Score Format for Computer Music)을 정의하여, 악곡의 note를 분석해서 각 소절(measure)별로 대표음 집합을 추출할 수 있도록 하였다. 각 소절의 대표음 집합을 이용해서, note의 변화에 따른 schematic을 생성한다 schematic 생성과 분석을 위해 note-schema의 규칙과 형식을 정의해 놓은 CNSDB(Changing-Note Schema DataBase)를 제안한다. 이러한 데이터 베이스를 이용하여 특징적인 규칙을 찾아내고, 적용해 악곡에서 segment를 나눌수 있다. 본 논문에서는 1700년대의 클래식 음악에서 특히 잘 나타나는 규칙을 적용해서 분석하였다.
In this paper, we proposed an algorithm for the musical note recognition. Firstly, a given bit-mapped music score image is converted to a set of individual note pattern images via vertical projection. Then, the pitch of a note is determinal by comparison in the note-head position with the reference five-lines. Also, the length of a note is found via leader clustering with a set of normalized note patterns. Finally, a datafile to play the music is obtained using the pitch and length of musical notes. Experimental results with a simple musical score image show that the proposed scheme is performed well.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.