• Title/Summary/Keyword: 쌍 선형과 역 쌍 선형 근사 방법

Search Result 2, Processing Time 0.019 seconds

Robust Intelligent Digital Redesign of Nonlinear System with Parametric Uncertainties (불확실성을 갖는 비선형 시스템의 강인한 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2006
  • This paper presents intelligent digital redesign method for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a TS fuzzy model for the chaotic Lorentz system is used as an . example to guarantee the stability and effectiveness of the proposed method.

Robust Digital Redesign for Observer-based System (관측기 기반 시스템에 대한 강인 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.285-290
    • /
    • 2007
  • In this paper, we presents robust digital redesign (DR) method for observer-based linear time-invariant (LTI) system. The term of DR involves converting an analog controller into an equivalent digital one by considering two condition: state-matching and stability. The design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed the uncertain parts of given observer-based system more precisely, When a sampling period is sufficiently small, the conversion of a analog structured uncertain system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs).