심실세동은 환자의 생명을 위협하는 가장 치명적인 부정맥으로서, 심실세동의 발견즉시 특별한 조치를 취하지 못할 경우 환자는 급사한다. 심실세동을 정지시키는 유일한 방법은 전기적 제세동이며 이는 환자의 심장 부위에 전기적 에너지를 가해 정상 심장 리듬을 되찾도록 하는 방법이다. 심실세동의 발생은 예측할 수 없고, 이를 진단하기 위한 심전도 교육을 모든 의료인에게 할 수 없으므로 심전도를 자동 분석하여 심실세동을 조기에 검출하는 자동 분석장치의 개발은 심실세동에 의한 급사를 줄이는데 매우 중요하다. 본 연구에서는 교차간섭성분의 제거 능력이 뛰어나며 쉽게 구사할 수 있는 Choi-Williams distriguteion (CWD) 방법을 이용하여 급사를 초래할 수 있는 심실세동을 자동 검출하는 알고리즘을 개발하였다. 그리고 개발된 알고리즘의 성능을 검증하기 위하여 본 논문에서는 두 그룹의 심실세동 데이터를 사용하였다. 검출 알고리즘은 심실세동의 시간 및 주파수 특성을 일곱가지 조건들에 대한 만족 여부를 이용하여 심실세동을 판정하였고, 실험의 민감도와 선택도는 각각 92.1%, 97 .2% 이다.
Iks 칼륨 전류에 관여하는 KCNQ1유전자의 S140G 돌연변이는 심방세동에 영향을 미치는 대표적인 돌연변이 유전자로, 심방세동과 S140G 돌연변이의 상관관계를 밝히기 위한 연구들이 많이 진행되어 왔다. 하지만 S140G 돌연변이 유전자가 심방 세동 환자의 심실 반응에 영향을 미칠 수 있다는 선행연구를 비롯하여 심방과 심실의 활동전위에 영향을 미칠 수 있는 가능성이 있음에도 불구하고, KCNQ1 S140G 돌연변이 유전자의 심실세동에 대한 영향과 그 메커니즘에 대한 연구는 부족하다. 따라서 본 연구는 KCNQ1 S140G 돌연변이 유전자가 심실세동에 미치는 영향에 대한 컴퓨터 시뮬레이션 연구를 통해 그 상관관계를 밝히고자 하였다. 이를 위해 1차원 세포 모델을 비롯하여 2차원 심실세동 반응과 3차원 전기 생리학 및 기계적 수축 시뮬레이션을 진행하였다. 3차원의 전기생리학 및 기계적 수축 시뮬레이션에서는 심실의 박출 활동을 확인하기 위한 정상 박동 시뮬레이션과 심실 세동 발생시의 심실의 변화를 확인하기 위한 세동 시뮬레이션을 각각 진행하였다. 그 결과 KCNQ1 S140G 돌연변이로 인해 심실의 Iks가 증가되었으며, 그로 인해 심실의 활동 전위기간(APD)과 불응기(ERP)가 단축되는 것을 확인할 수 있었다. 또한 활동전위 지속 곡선(APDr)과 불응기 지속 곡선(ERPr)이 완만하게 나타났으며, 심근세포의 전도파장이 감소하였다. 3차원 정상 박동 시뮬레이션의 결과 표준형에서 보다 KCNQ1 S140G 돌연변이형에서 심실이 소모하는 ATP의 양과 박출계수가 감소하였다. 3차원 세동 시뮬레이션 결과 표준형에서는 심실세동이 종결되었으나, S140G 돌연변이 형에서는 심실세동이 종결되지않고 유지되었으며, 심실세동이 빠르게 발생하였다. 결론적으로, KCNQ1 S140G 돌연변이로 인해 증가된 심실의 Iks는 심실의 박출 효율을 감소시키고 심실세동을 발생시키고 유지시키며, 부정맥 발생의 위험성을 높일 수 있다.
심실세동은 심장의 무질서한 전기적 활동으로 인해 심근 수축이 동시에 이뤄지지 않게 되어 급성심장사에 이르게 하는 부정맥이다. 본 연구에서는 이러한 심실세동 검출을 위해 적은 양의 학습 데이터만으로 좋은 분류 성능을 보이는 SVM(Support Vector Machine) 분류기 기반의 심실세동 검출 알고리즘을 제안하였다. 심전도 신호로부터 SVM 분류기에 입력할 입력 특징을 추출하기 위하여 웨이브렛 변환기반의 대역통과 필터링, R점 검출, 입력 특징 추출구간 설정의 전처리 과정을 수행하였으며 입력 특징으로는 리듬 기반의 정보 및 웨이브렛 변환 계수를 선택하였다. SVM 다원분류기는 정상리듬(NSR) 분류기, 심실 세동과 유사한 심실빈맥(VT) 분류기, 심실세동(VF) 분류기 그리고 그 외 부정맥 분류기로 구성하였다. SVM 분류기의 파라미터 C값과 ${\alpha}$값은 실험을 통하여 최고 성능을 나타내는 C=10, ${\alpha}=1$을 선택하였다. SVM 다원 분류기를 통한 정상리듬, 심실빈맥 심실세동의 검출 평균값은 98.39%, 96.92%, 99.88%의 우수한 검출 성능을 나타냈다. 본 연구에서 제안된 동일 입력특징을 사용하여 SVM 분류기의 심실세동 검출 결과와 다층퍼셉트론 신경망 및 퍼지추론 방법에 의한 결과를 비교하였으며 SVM 분류기가 비슷하거나 우수한 결과를 보였다. 또한 기존 다른 알고리즘에 비하여도 우수한 결과를 보임으로써 제안된 입력 특징을 통한 SVM 분류기 기반의 심실세동 검출이 유용함을 확인할 수 있었다.
전기적 신호의 이상으로 발생하는 심방 부정맥은 심방세동으로 발전하는 대표적 심장 질환이다. 이러한 원인에는 세포 내 이온 채널의 유전적 결함으로 인한 기전이 알려져 있다. 지속적인 연구로 밝혀진 대표적인 유전적 질환 중 하나로서 KCNH2 유전자 돌연변이가 있다. 본 연구에서는 KCNH2 유전자 돌연변이가 심방부정맥을 유발하는 연관성연구를 기반으로 심실에서의 심장 질환 발현 연관성을 확인하고 심실부정맥과 심실세동 가능성을 예측하였다. 이를 위해 Ten tusscher 세포 모델에 KCNH2 유전자의 N588K, L532P 변이를 적용하여 2차원과 3차원 시뮬레이션을 진행하였다. wild-type(WT)과 mutant-type(MT)의 전기전도 패턴을 비교했다. 그 결과 WT의 전도파형이 일찍 자가소멸(self-termination) 되는 것과 대조적으로 MT는 회귀성 파형이 유지되었다(WT : 3.6초간 유지, MT : 지속적). 따라서 본 연구를 통해 KCNH2 유전자 돌연변이가 심실 조직의 취약성 (Action Potential Duration 감소, WT : 270 ms, N588K : 130 ms, L532P : 100 ms)을 증가시켜 부정맥의 요인이 됨을 확인하였다.
본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions, NEWFM)을 이용하여 Creighton University Ventricular Tachyarrhythmia DataBase(CUDB)의 심전도(ECG) 신호로부터 정상리듬(Normal Sinus Rhythm, NSR)과 심실빈맥/심실세동(Ventricular Tachycardia/Ventricular Fibrillation, VT/VF)을 분류하는 방안을 제시하고 있다. NEWFM에서 사용할 특징입력을 추출하기 위해서 첫 번째 단계에서는 웨이블릿 변환(wavelet transform, WT)을 이용하였다. 두 번째 단계에서는 첫 번째 단계에서 생성된 웨이블릿 계수들을 위상공간 재구성(Phase Space Reconstruction, PSR)과 첨단(Peak) 추출 기법의 입력 값으로 이용하여 2개의 특징입력을 추출하였다. NEWFM은 이들 2개의 특징입력을 이용하여 정상리듬과 심실빈맥/심실세동을 분류하였고 그 결과로 90.13%의 분류성능을 나타내었다.
본 고에서는 체내 심실신호를 농하여 신경학적 분석 및 다형성의 측면에서 심실세동이 일어나는 것을 예측하는 분석 알고리즘을 설계하였다. 신경학적 측면에서는 시계열 신호의 Peak to Peak Interval을 예측법과 0.15Hz를 기준으로 HRV 신호의 AR Burg 모델링을 통하여 고주파성과 저주파성을 나누어 교감신경과 부교감신경의 활동성 통한 신경학적 예측법을 제시하였으며 또한 체내 심실신호의 비선형적 특성을 고려한 Fractal Dimension을 생성시킴으로서 주기성의 특성과 다형성 통한 예측법을 제시하였다. 체내 심전도를 기반으로 Simulation 하였으며 각 분석별 조합을 통하여 최적의 예측 구조를 찾고자 하였다. 의학적 의미가 있는 민감도와 특이도를 판별하였으며 예측을 위한 수행시간을 실험하였다. 이를 통하여 자율신경 활성도와 다형성 판별을 조합한 방법이 심실세동 예측을 위한 민감도의 측면에서 가장 우수함을 나타내었고 시뮬레이션을 위만 시뮬레이터(Simulator) UI(User Interface)를 제시하였다.
본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with weighted Fuzzy Membership Functions, NEWFM)과 웨이블릿 변환(wavelet transforms, WT)을 이용하여 Creighton University Ventricular Tachyarrhythmia Database(CUBD)의 심전도 신호로부터 정상리듬(normal sinus rhythm, NSR)과 심실 빈맥/세동(Ventricular tachycardia/fibrillation VT/VF)을 검출하는 방안을 제시하고 있다. NEWFM에서 사용할 특정입력을 추출하기 위해서 첫 번째 단계에서는 웨이블릿 변환을 이용하여 스케일 레벨 3과 레벨 4의 주파수 대역에서 d3과 d4의 계수들을 각각 선택하였다. 두 번째 단계에서는 d3과 d4의 계수들에 대한 구간별 표준편차를 이용하여 8개의 특징입력을 추출하였다. NEWFM은 이들 8개의 특정입력을 이용하여 정상리듬과 심실 빈맥/세동을 검출하였고 그 결과로 90.1%의 검출성능을 나타내었다.
심방세동은 발작성 심방세동 단계에서부터 검출 및 분석하여 적절한 치료를 실시하여야 하며, 홀터 심전계를 통해서만 측정할 수 있다. 현재 12채널 심전계를 통해서는 심방세동 신호를 추출할 수 있는 효과적인 방법들이 개발되어 있으나, 홀터 심전계를 위한 방법으로는 심실활동 템플릿을 단순 제거하는 ABS(averaged beat subtraction)방법이 사용되고 있다. 최근 단일 채널 심전도로부터 심방세동 신호를 추출하기 위한 PCA(principal component analysis) 또는 SVD(singular value decomposition) 기반의 알고리즘이 제안되기도 하였으나, 구현이 복잡하고 전문가의 개입이 필요한 한계가 있다. 본 논문에서는 주 입력인 심방세동 심전도에서 심실활동을 이벤트로서 검출한 뒤 이를 기준 입력으로 하는 이벤트 동기 적응필터(ESAF, event-synchronous adaptive filter)를 제안하고, 심방세동 신호 추출 성능을 평가해 보았다. 그 결과 기존 ABS 방법에 비해 우수할 뿐만 아니라, 전문가의 개입 없이도 PCA 또는 SVD 기반의 알고리즘과도 대등한 성능을 보였다. 나아가 이형성 심실활동이 있는 경우에도 효과적으로 대응할 수 있는 확장 ESAF 방법을 제안하였으며, 단형성 심실활동이 있는 경우와 유사한 수준의 성능을 확인하였다. 제안된 알고리즘을 홀터 심전계에 적용하면 발작성 심방세동 심전도의 분석뿐만 아니라 항부정맥 약물의 치료효과를 실시간으로 보다 정확하게 평가할 수 있을 것으로 기대된다.
본 연구는 심정지 환자에 특성 및 심폐소생술과 제세동 등 응급처치 시행에 관련된 구급활동일지와 심폐정지환자 응급처치 세부상황표를 분석하여 심정지 환자의 소생을 위한 병원전 응급처치의 질향상에 기여할 목적으로 수행하였다. 연구결과는 다음과 같다. 제세동할 수 있는 심실세동과 심실빈맥 리듬은 20.3%이고 이중 제세동기에 의한 쇼크는 66.5%가 시행되었다. 현장일반인 심폐소생술 시행시 소생률은 미시행시에 비해 높았으나 유의한 차이(p=0.10)는 없었다. 심전도 기록을 판독한 결과 심실빈맥이거나 심실세동인 경우가 무수축이거나 무맥성 전기활동인 경우보다 소생률이 높고 유의한 차이(p=0.000)가 있다. 제세동을 적절하게 한 군은 부적절하거나 판단이 불가능한 경우보다 소생률이 높았고 유의한 차이(p=0.000)를 보였다. 이상의 결과를 토대로 병원전 응급구조사의 기록과 제세동 등 적절한 응급처치로 심정지 환자의 소생률을 높이는데 기여하였으면 한다.
심실 빈맥은 심실에서 비정상적인 전기자극 발생으로 인하여 심박수가 분당 $100{\sim}120$회를 초과하는 부정맥 증상을 일컫는다. 심실 빈맥이 발생하는 경우 심박출량이 감소하고, 폐에는 미처 나가지 못한 피가 고이는 경우도 발생하여 심부전증이 나타나거나 심실 세동으로 발전하여 사망에 이를 수 있는, 매우 위험한 부정맥 중의 하나이므로 심실 빈맥 검출은 매우 중요한 사안이다. 따라서 본 연구에서는 R-R 간격 정보를 이용하여 심실 빈맥 부정맥 신호를 실시간으로 검출할 수 있는 신호처리 알고리즘을 구현하고자 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.