• Title/Summary/Keyword: 실시간 항행지원시스템

Search Result 18, Processing Time 0.023 seconds

Implementation and Operational Test of ADS-B System in Goheung Aeronautical Center (고흥항공센터 ADS-B 구축 및 운용시험)

  • Yoo, Chang-Sun;Song, Bok-Sub;Cho, Am;Sung, Ki-Jung;Koo, Sam-Ok
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Goheung aeronautical center is located in the area of Goheung of which land is reclaimed from sea and has a runway of length 700m, width 25m with test facility which has been used for flight test of UAV and small aircraft. To support the enhancement of aircraft safety, 1090ES ADS-B ground system as the ground surveillance system has been implemented. ADS-B system based on GPS and digital data link provides the function of enhancing the aircraft safety through flight information among aircrafts. This paper gives the result that the implementation of ADS-B ground system and the flight test with onboard ADS-B transmitter has been conducted.

Analysis and Design of Common Platform Core Technology for Maritime Autonomous Surface Ships (자율운항선박의 공통플랫폼 요소기술 분석 및 설계)

  • Jeong, Seong-hoon;Shim, Joon-Hwan;Choi, Kwan-seon;Son, Young-chang
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.507-513
    • /
    • 2018
  • The maritime autonomous surface ship is automatically collects and manages various information necessary for the operation to minimize human intervention and safely perform the mission assigned to the ship. And the ship may autonomously operate the partial or entire route to the destination determined by the ship himself. This ship navigation technology allows partially remote control the ship to be operated if necessary. The maritime autonomous surface ship (MASS) should collect and manage signals of various navigation communication equipments and engines mounted on the ship for safe operation. This requires a common platform technology. In this paper, we propose a common platform that is the core of smart ship implementation. Territorial authorities and ships are connected by satellite or terrestrial communication. In such a communication environment, information is exchanged smoothly in real time. This allows the onshore authorities to monitor ships and provide remote control to enable safe vessel navigation at sea.

Development of status monitoring tools for KASS system operation (KASS 시스템 운영을 위한 상태감시 도구 개발)

  • Minhyuk SON;ByungSeok LEE
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.643-648
    • /
    • 2023
  • The Korea Augmentation Satellite System is an SBAS system being developed with the goal of providing SoL (Safety of Life) in accordance with ICAO (International Civil Aviation Organization) standards by December 2023. Monitoring the status of the system is essential for the continuous provision of KASS services, and a status monitoring tool should be developed for this purpose. The development of a status monitoring tool was divided into SYSRT (SYStem Real Time monitoring tool), SMSPP (Subsystem Monitoring Statistics tool for Post Processing) depending on the purpose. Tool development was completed through a series of procedures: requirements definition, design, development, and verification. To verify the status monitoring tool, the KASS system's real data (August 2023) were used to verify it, and the results were statistically analyzed to derive operating time and operating rate. It plans to use these tools to support continuous service provision for SoL service starting after this year.

Scalable FFT Processor Based on Twice Perfect Shuffle Network for Radar Applications (레이다 응용을 위한 이중 완전 셔플 네트워크 기반 Scalable FFT 프로세서)

  • Kim, Geonho;Heo, Jinmoo;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.429-435
    • /
    • 2018
  • In radar systems, FFT (fast Fourier transform) operation is necessary to obtain the range and velocity of target, and the design of an FFT processor which operates at high speed is required for real-time implementation. The perfect shuffle network is suitable for high-speed FFT processor. In particular, twice perfect shuffle network based on radix-4 is preferred for very high-speed FFT processor. Moreover, radar systems that requires various velocity resolution should support scalable FFT points. In this paper, we propose a 8~1024-point scalable FFT processor based on twice perfect shuffle network algorithm and present hardware design and implementation results. The proposed FFT processor was designed using hardware description language (HDL) and synthesized to gate-level circuits using $0.65{\mu}m$ CMOS process. It is confirmed that the proposed processor includes logic gates of 3,293K.

Implementation of Movement Detection System for Patient on Bed (병상환자의 움직임 감지 시스템 구현)

  • Baec, Sung-Ho;Jeon, Min-Sik;Ko, Bong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.458-463
    • /
    • 2015
  • This paper suggests detection system for the movement of patient on bed based on IEEE802.15.4 by using pressure pad and guard sensor. The system is designed to detect ordinary activities of patients on bed as well as patients' falling from the bed while sleeping at night. The node that is installed at bed sends data to gather when the pressure pad and sensor of guard detect patients' activities and falling. These data sent to gather are transmitted to monitor at help desk by TCP/IP communication. To remove unnecessary data that occurred due to switch chattering during tossing and turning, timer of MCU is used. Also, Communication module can change transmission power to apply this system to various environments of hospital room. Therefore, the nurse can take care of patients on bed in real time with data about patients' conditions.

VTS 데이터 공유를 위한 IVEF 데이터 및 프로토콜 개선방안

  • Lee, Byeong-Gil;Kim, Byeong-Du;Jo, Hyeon-Suk;Lee, Sin-Geol;Seo, Hong-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.487-489
    • /
    • 2012
  • 최근 해상교통관제시스템(VTS : Vessel Traffic Service)은 항행지원정보교류가 가능한 육상국으로서 선박 통항의 안전과 효율성을 증진시키고 환경을 보호하는 e-Navigation의 핵심적 시스템으로 역할이 기대되고 있다. 최근 IALA를 통하여 국제적으로 데이터 공유를 위한 구조에 대한 연구와 표준 포맷이 정해지고 있으며 IVEF(IVEF:Inter-VTS Data Exchange Format)는 이중의 한 중요한 요소이다. 이러한 실시간의 트래픽 정보는 국가적으로 보안에 민감한 요소이나 현 규격에 정해진 보안성에 대한 규정은 다소 정해진 바 없이, 연동하기 위한 보안 규격을 다시 설계하여 상호 추진하고 연동시험을 수행해야 될 수준이다. 또한 Radar에 대한 물표 자체의 전달은 현재 고려하고 있지 않기 때문에 Track되지 않은 물표는 불필요한 많은 속성들을 같이 전송해야 하며, 레이더 물표에 대한 별도의 정해진 속성은 없는 상태여서 기존의 선박의 길이를 기반으로 비율을 고려하여 다시 재 산출되어야 가능하다. 따라서, 본 연구에서는 이러한 데이터 공유를 위한 IVEF의 규격을 검토하고 이를 보완하는 내용을 고려하여 새로운 프로토콜 및 방안을 제시한다. 이러한 구조는 VTS 시스템에서 적용 가능한 방안인지를 확인하여, 실제 적용할 수 있는 기술개발로서 방향을 정립하고자 한다.

  • PDF

Design and Implementation of ontology based context-awareness platform using driver intent information (운전자 의도정보를 이용한 온톨로지 기반 지능형자동차 상황인식 플랫폼 설계 및 구현)

  • Ko, Jae-Jin;Choi, Ki-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.1
    • /
    • pp.14-21
    • /
    • 2014
  • In this paper, we devise a new ontology-based context-aware system to recognize the smart car information, in which driver's intent is utilized by information of car, driver, environment as well as driving state, driver state. So proposed system can handle dynamically risk changes by adding real-time situational awareness information. We utilize the camera image recognition technology for context-aware intelligent vehicle driving information, and implement information acquisition scheme OBD-II protocol to acquire vehicle's information. Experiments confirm that the proposed advanced driver safety assist system outperforms the conventional system, which only utilizes the information of vehicle, driver, and environmental information, to support the service of a high-speed driving, lane-departure service and emergency braking situation awareness.

Design and Implementation of BNN based Human Identification and Motion Classification System Using CW Radar (연속파 레이다를 활용한 이진 신경망 기반 사람 식별 및 동작 분류 시스템 설계 및 구현)

  • Kim, Kyeong-min;Kim, Seong-jin;NamKoong, Ho-jung;Jung, Yun-ho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.211-218
    • /
    • 2022
  • Continuous wave (CW) radar has the advantage of reliability and accuracy compared to other sensors such as camera and lidar. In addition, binarized neural network (BNN) has a characteristic that dramatically reduces memory usage and complexity compared to other deep learning networks. Therefore, this paper proposes binarized neural network based human identification and motion classification system using CW radar. After receiving a signal from CW radar, a spectrogram is generated through a short-time Fourier transform (STFT). Based on this spectrogram, we propose an algorithm that detects whether a person approaches a radar. Also, we designed an optimized BNN model that can support the accuracy of 90.0% for human identification and 98.3% for motion classification. In order to accelerate BNN operation, we designed BNN hardware accelerator on field programmable gate array (FPGA). The accelerator was implemented with 1,030 logics, 836 registers, and 334.904 Kbit block memory, and it was confirmed that the real-time operation was possible with a total calculation time of 6 ms from inference to transferring result.