• Title/Summary/Keyword: 실시간 영상인식

Search Result 741, Processing Time 0.034 seconds

A Survey of Real-Time Object Recognition (실시간 객체인식을 위한 이미지 처리기술 분석)

  • Park, Ju-Hyeok;Ha, Ok-Kyoon;Jun, Yong-Kee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.35-36
    • /
    • 2017
  • 실시간 객체 인식은 카메라로부터 입력받은 영상 내에 존재하는 객체를 실시간으로 처리하는 기술로써 정확한 인식률과 빠른 인식 속도를 가져야 한다. 하지만 인식 속도가 보장되지 않으면 실시간으로 객체를 인식 할 수 없고 인식률이 보장되지 않으면 객체 인식을 통해 구현한 기능이 올바르게 동작하지 않을 수 도 있다. 따라서 본 논문에서는 실시간으로 객체를 인식하는 기술을 분류하고 연구 동향을 소개한다. 그리고 실시간 객체 인식을 위한 향후 연구 방향을 제시한다.

  • PDF

Design & Implementation of Real-Time Lipreading System using PC Camera (PC카메라를 이용한 실시간 립리딩 시스템 설계 및 구현)

  • 이은숙;이지근;이상설;정성태
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.310-313
    • /
    • 2003
  • 최근 들어 립리딩은 멀티모달 인터페이스 기술의 응용분야에서 많은 관심을 모으고 있다. 동적영상을 이용한 립리딩 시스템에서 해결해야 할 주된 문제점은 상황 변화에 독립적으로 얼굴 영역과 입술 영역을 추출하고 오프라인이 아닌 실시간으로 입력된 입술 영상의 인식을 처리하여 립리딩의 사용도를 높이는 것이다. 본 논문에서는 사용자가 쉽게 사용할 수 있는 PC카메라를 사용하여 영상을 입력받아 학습과 인식을 실시간으로 처리하는 립리딩 시스템을 구현하였다. 본 논문에서는 움직임이 있는 화자의 얼굴영역과 입술영역을 컬러, 조명등의 변화에 독립적으로 추출하기 위해 HSI모델을 이용하였다. 입력 영상에서 일정한 크기의 영역에 대한 색도 히스토그램 모델을 만들어 색도 영상에 적용함으로써 얼굴영역의 확률 분포를 구하였고, Mean-Shift Algorithm을 이용하여 얼굴영역의 검출과 추적을 하였다. 특징 점 추출에는 이미지 기반 방법인 PCA 기법을 이용하였고, HMM 기반 패턴 인식을 사용하여 실시간으로 실험영상데이터에 대한 학습과 인식을 수행할 수 있었다.

  • PDF

SVM Based Facial Expression Recognition for Expression Control of an Avatar in Real Time (실시간 아바타 표정 제어를 위한 SVM 기반 실시간 얼굴표정 인식)

  • Shin, Ki-Han;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1057-1062
    • /
    • 2007
  • 얼굴표정 인식은 심리학 연구, 얼굴 애니메이션 합성, 로봇공학, HCI(Human Computer Interaction) 등 다양한 분야에서 중요성이 증가하고 있다. 얼굴표정은 사람의 감정 표현, 관심의 정도와 같은 사회적 상호작용에 있어서 중요한 정보를 제공한다. 얼굴표정 인식은 크게 정지영상을 이용한 방법과 동영상을 이용한 방법으로 나눌 수 있다. 정지영상을 이용할 경우에는 처리량이 적어 속도가 빠르다는 장점이 있지만 얼굴의 변화가 클 경우 매칭, 정합에 의한 인식이 어렵다는 단점이 있다. 동영상을 이용한 얼굴표정 인식 방법은 신경망, Optical Flow, HMM(Hidden Markov Models) 등의 방법을 이용하여 사용자의 표정 변화를 연속적으로 처리할 수 있어 실시간으로 컴퓨터와의 상호작용에 유용하다. 그러나 정지영상에 비해 처리량이 많고 학습이나 데이터베이스 구축을 위한 많은 데이터가 필요하다는 단점이 있다. 본 논문에서 제안하는 실시간 얼굴표정 인식 시스템은 얼굴영역 검출, 얼굴 특징 검출, 얼굴표정 분류, 아바타 제어의 네 가지 과정으로 구성된다. 웹캠을 통하여 입력된 얼굴영상에 대하여 정확한 얼굴영역을 검출하기 위하여 히스토그램 평활화와 참조 화이트(Reference White) 기법을 적용, HT 컬러모델과 PCA(Principle Component Analysis) 변환을 이용하여 얼굴영역을 검출한다. 검출된 얼굴영역에서 얼굴의 기하학적 정보를 이용하여 얼굴의 특징요소의 후보영역을 결정하고 각 특징점들에 대한 템플릿 매칭과 에지를 검출하여 얼굴표정 인식에 필요한 특징을 추출한다. 각각의 검출된 특징점들에 대하여 Optical Flow알고리즘을 적용한 움직임 정보로부터 특징 벡터를 획득한다. 이렇게 획득한 특징 벡터를 SVM(Support Vector Machine)을 이용하여 얼굴표정을 분류하였으며 추출된 얼굴의 특징에 의하여 인식된 얼굴표정을 아바타로 표현하였다.

  • PDF

Rotated object recognition based on corner feature points in mobile environment (모바일 환경 응용을 위한 코너 특징점 기반의 회전 객체 검출)

  • Kim, Dae-Hwan;Piao, Jin-Chun;Kim, Shin-Dug
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.23-26
    • /
    • 2013
  • 최근 모바일 장치의 영상 데이터 처리 능력 확대와 더불어 사용자가 요구하는 다양한 영상 데이터의 효율적인 인식 기술 연구가 요구되어지고 있다. 모바일 환경은 고성능 PC 환경과 달리 저사양의 CPU와 메모리를 탑재하고 있어, 영상에서 원하는 객체를 인식하기 위한 기존의 방법론으로는 사용자 요구를 실시간으로 충족하기 어려운 부분이 존재한다. 이에 모바일 환경에 맞는 객체 인식 방법론의 개발이 요구된다. 모바일 환경에서 실시간으로 객체 인식을 하기 위하여, 본 논문에서는 객체 코너 정보를 이용한 Harris corner detector[1]로부터 객체의 특징점을 추출하고, 이를 바탕으로 하여 영상내의 객체 정보 인식 방법을 제안한다. 제안하는 방법에 의해, 입력 영상에서 객체의 코너 정보를 빠르게 추출, 기존 특징점과의 비교를 통하여 영상 내부의 객체 인식을 진행한다. 일반적으로, 회전된 특징점 객체의 정보는 객체의 회전 정도에 따라 코너 픽셀 색상 정보의 변화가 발생하게 된다. 특징점의 색상값은 객체의 회전 정도에 영향을 받아 주변의 픽셀값과 혼합되는 특성이 존재한다. 본 논문에서는 회전 변경된 픽셀 색상값의 영향을 분석하여, 회전된 객체의 특징점 추출 및 객체 검출에 반영하도록 하여, 영상 내부의 회전된 객체 검출의 수행에 효과적으로 이용될 수 있도록 한다. 특징점의 코너 정보를 이용하여 객체를 인식하는 것은, 객체의 인식률은 다소 감소하더라도 모바일 환경에서 계산량의 감소를 통한 실시간 활용이 가능하도록 한다. 이러한 특성은 저성능 CPU와 메모리에서도 회전된 객체의 인식을 수행할 수 있게 하는데 상당히 효과적이다.

  • PDF

Driving Condition based Dynamic Frame Skip Method for Processing Real-time Image Recognition Methods in Smart Driver Assistance Systems (스마트 운전자 보조 시스템에서 영상인식기법의 실시간 처리를 위한 운전 상태 기반의 동적 프레임 제외 기법)

  • Son, Sanghyun;Jeon, Yongsu;Baek, Yunju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • According to evolution of technologies, many devices related to various applications were researched. The advanced driver assistance system is a famous technique effected from the evolution. The technique of driver assistance uses image recognition methods to collect exactly information around the vehicle. The computing power of driver assistance device has become more improved than in the past. However, it's difficult that processed various recognition methods at real-time. We propose new frame skip method to process various recognition methods at real-time in the limited hardware. In the previous researches, frame skip rate was set up static values, thus the number of processed frames through recognition methods was smaller. We set up the frame skip rate dynamically using a driving condition of vehicle through speed and acceleration value, in addition, the number of processed frames was maximized. The performance is improved more 32.5% than static frame skip method.

(Real Time Classification System for Lead Pin Images) (실시간 Lead Pin 영상 분류 시스템)

  • 장용훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.9
    • /
    • pp.1177-1188
    • /
    • 2002
  • To classify real time Lead pin images in this paper, The image acquisition system was composed to C.C.D, image frame grabber(DT3153), P.C(PentiumIII). I proposed image processing algorithms. This algorithms were composed to real time monitoring, Lead Pin image acquisition, image noise deletion, object area detection, point detection and pattern classification algorithm. The raw images were acquired from Lead pin images using the system. The result images were obtained from raw images by image processing algorithms. In implemental result, The right recognition was 97 of 100 acceptable products, 95 of 100 defective products. The recognition rate was 96% for total 200 Lead Pins.

  • PDF

The Real-time Printed Alphabets Recognition using Artificial Neural Networks (인공신경망을 이용한 실시간 영문인쇄체 인식)

  • 심성균;정원용
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.149-152
    • /
    • 2001
  • The goals of this papper are not only to maximize of performance but also to reduce the response time for the real-time printed alphabets recognition system using the backpropagation algorithm in the artificial neural network. The Genesis board and MIL(Matrox Image Library) package were used to real-time acquisition, processing and display of images. Through this experiment proved the possibility of real-time recognition processing by comparing response times of the system and proposing the method to reduce of order of the output vectors.

  • PDF

Development of Recognition System for Traffic Violations Using Deep Learning Algorithms (딥러닝 상황 인식을 이용한 교통법규 위반 인식 시스템 개발)

  • Kim, Joong-wan;Jo, Hyun-jun;Choi, Jong-geon;Yun, Tae-jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.319-320
    • /
    • 2022
  • 교통량이 증가됨에 따라 높아지는 사고율을 줄이기 위해 효율적이며, 다양한 교통 위반 단속이 요구되고 있다. 기존의 유무인 교통법규 위반 단속 시스템의 도입으로 단속 구역 확대를 시도하고 있으나 높은 비용의 문제로 한정된 지역에서만 실시되고 있다. 해당 문제 해결을 위해 본 논문에서는 딥러닝 실시간 객체인식기술을 적용하여 차량의 교통법규 위반을 인식하며 이에 대한 정보를 제공하는 시스템을 개발하였다. 실시간 객체인식 알고리즘인 YOLOv4와 실시간 객체추적기술인 deepSORT 알고리즘을 데스크톱 PC에 적용하여 구현하였다. 개발한 시스템은 과속, 버스 전용 차로, 주정차, 급속 다차선 변경에 대한 인식 결과를 제공한다. 기존 설치된 CCTV 영상을 대상으로 시스템 적용이 가능하여 저비용으로 넓은 지역에 대한 교통법규 위반 상황 인식을 기대할 수 있다.

  • PDF

Hardware Design and Implementation for Real Time Compression and Recognition of Check Image (수표영상의 실시간 압축 및 인식처리를 위한 하드웨어 설계 및 구현)

  • 오승환;신동욱
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.541-543
    • /
    • 2001
  • 본 연구에서는 1비트 단위로 연속적으로 입력되는 수표의 영상데이터를 실시간으로 압축처리하고 또한 수표의 하단부에 기록된 인식하기 위한 알고리즘과 하드웨어 구현을 보여준다. 제안된 알고리즘에서는 실시간 처리를 위해 하드웨어에 적합한 알고리즘이 소개되며, 실제로 PLD로 설계 구현하여 그 타당성을 확인하였다.

  • PDF

Video Monitoring System on Real Time using Object Extraction (실시간 객체추출 영상감시 시스템)

  • Oh, Taek-Hwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05a
    • /
    • pp.311-314
    • /
    • 2010
  • 실시간 영상에서 객체 추적은 수년간 컴퓨터 비전 및 여러 실용적 응용 분야에서 관심을 가지는 주제 중 하나이다. 하지만 배경영상의 잡음을 객체로 인식하는 오류로 인하여 추출하고자 하는 객체를 찾지 못하는 경우가 있다. 본 논문에서는 실시간 영상에서 적응적 배경영상을 이용하여 객체를 추출하는 방법을 제안한다. 입력되는 영상에서 배경영역의 잡음을 제거하고 조명에 강인한 객체 추출을 위하여 객체영역이 아닌 배경영역 부분을 실시간으로 갱신함으로써 적응적 배경영상을 생성한다. 그리고 배경영상과 카메라로부터 입력되는 입력영상과의 차를 이용하여 객체를 추출한다.

  • PDF