Development of Recognition System for Traffic Violations Using Deep Learning Algorithms

딥러닝 상황 인식을 이용한 교통법규 위반 인식 시스템 개발

  • Kim, Joong-wan (Department of Aeronautical Software Engineering, Kyungwoon University) ;
  • Jo, Hyun-jun (Department of Aeronautical Software Engineering, Kyungwoon University) ;
  • Choi, Jong-geon (Department of Aeronautical Software Engineering, Kyungwoon University) ;
  • Yun, Tae-jin (Department of Aeronautical Software Engineering, Kyungwoon University)
  • 김중완 (경운대학교 항공소프트웨어공학과) ;
  • 조현준 (경운대학교 항공소프트웨어공학과) ;
  • 최종건 (경운대학교 항공소프트웨어공학과) ;
  • 윤태진 (경운대학교 항공소프트웨어공학과)
  • Published : 2022.01.12

Abstract

교통량이 증가됨에 따라 높아지는 사고율을 줄이기 위해 효율적이며, 다양한 교통 위반 단속이 요구되고 있다. 기존의 유무인 교통법규 위반 단속 시스템의 도입으로 단속 구역 확대를 시도하고 있으나 높은 비용의 문제로 한정된 지역에서만 실시되고 있다. 해당 문제 해결을 위해 본 논문에서는 딥러닝 실시간 객체인식기술을 적용하여 차량의 교통법규 위반을 인식하며 이에 대한 정보를 제공하는 시스템을 개발하였다. 실시간 객체인식 알고리즘인 YOLOv4와 실시간 객체추적기술인 deepSORT 알고리즘을 데스크톱 PC에 적용하여 구현하였다. 개발한 시스템은 과속, 버스 전용 차로, 주정차, 급속 다차선 변경에 대한 인식 결과를 제공한다. 기존 설치된 CCTV 영상을 대상으로 시스템 적용이 가능하여 저비용으로 넓은 지역에 대한 교통법규 위반 상황 인식을 기대할 수 있다.

Keywords