• Title/Summary/Keyword: 실시간 데이터 저장

Search Result 801, Processing Time 0.028 seconds

Multiresolution 4- 8 Tile Hierarchy Construction for Realtime Visualization of Planetary Scale Geological Information (행성 규모 지리 정보의 실시간 시각화를 위한 다계층 4-8 타일 구조의 구축)

  • Jin, Jong-Wook;Wohn, Kwang-Yun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.12-21
    • /
    • 2006
  • Recently, Very large and high resolution geological data from aerial or satellite imagery are available. Many researches and applications require to do realtime visualization of interest geological area or entire planet. Important operation of wide-spreaded terrain realtime visualization technique is the appropriate model resolution selection from pre-processed multi-resolution model hierarchy depend upon participant's view. For embodying such realtime rendering system with large geometric data, Preprocessing multi-resolution hierarchy from large scale geological information of interest area is required. In this research, recent Cubic multiresolution 4-8 tile hierarchy is selected for global planetary applications. Based upon the tile hierarchy, It constructs the selective terminal level tile mesh for original geological information area and starts to sample individual generated tiles for terminal level tiles. It completes the hierarchy by constructing intermediate tiles with low pass filtering in bottom-up direction. This research embodies series of efficient cubic 4-8 tile hierarchy construction mechanism with out-of-core storage. The planetary scale Mars' geographical altitude data and image data were selected for the experiment.

  • PDF

An Efficient Real-time Rendering Method for Compressed Terrain Dataset with Wavelet Transform (웨이블릿 변환으로 압축된 지형 데이터의 효율적인 실시간 렌더링 기법)

  • Kim, Tae-Gwon;Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.14 no.4
    • /
    • pp.45-52
    • /
    • 2014
  • We cannot load the entire data for high-resolution terrain model to the GPU memory since its size is too big. Out-of-core approaches are commonly used to solve the problem. However, due to limited bandwidth of the secondary storage, it is difficult to render the terrain in real-time. A method that compresses the DEM data with wavelet transform on GPU, and renders the decoded data is suggested. However, it is inefficient since it has to sample the values from textures, convert them to vertices, and generate a mesh periodically. We propose a method to store the approximation coefficients of wavelet compression as vertex attributes and render the terrain by decoding the data on geometric shader. It can reduce the amount of transferring terrain texture since approximation coefficients are given as an attribute of the vertex. Also, it generate meshes without additional upload of terrain texture.

Implementation of Video Surveillance System with Motion Detection based on Network Camera Facilities (움직임 감지를 이용한 네트워크 카메라 기반 영상보안 시스템 구현)

  • Lee, Kyu-Woong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.169-177
    • /
    • 2014
  • It is essential to support the image and video analysis technology such as motion detection since the DVR and NVR storage were adopted in the real time visual surveillance system. Especially the network camera would be popular as a video input device. The traditional CCTV that supports analog video data get be replaced by the network camera. In this paper, we present the design and implementation of video surveillance system that provides the real time motion detection by the video storage server. The mobile application also has been implemented in order to provides the retrieval functionality of image analysis results. We develop the video analysis server with open source library OpenCV and implement the daemon process for video input processing and real-time image analysis in our video surveillance system.

Environment Implementation of Real-time Supervisory System Using Motion Detection Method (동작 검출 기법을 이용한 실시간 감시시스템의 구현)

  • 김형균;고석만;오무송
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.999-1002
    • /
    • 2003
  • In this study, embodied supervisory system that apply motion detection technique to small web camera and detects watch picture. Motion detection technique that use pixel value of car image that use in existing need memory to store background image. Also, there is sensitive shortcoming at increase of execution time by data process of pixel unit and noise. Suggested technique that compare extracting motion information by block unit to do to have complexion that solve this shortcoming and is strong at noise. Because motion information by block compares block characteristic value of image without need frame memory, store characteristic cost by block of image. Also, can get effect that reduce influence about noise and is less sensitive to flicker etc.. of camera more than motion detection that use pixel value in process that find characteristic value by block unit.

  • PDF

Introduction to high resolution weather observation of SK Planet (SK플래닛 국지기상 관측 소개)

  • Myung, Kwang Min;Park, Won Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.77-77
    • /
    • 2015
  • 기상이변으로 인한 사회 경제적 피해의 증가로 기상정보에 대한 중요성이 커지면서 해외에서는 민간 기업이 기상 관측망을 구축하는 사례가 나타났다. 미국의 Earth Network은 전 세계에 1만개의 기상 관측센서를 설치하였고, 일본의 통신회사인 NTT DoCoMo는 일본에 4000여 개의 기상 및 환경관측 센서를 구축하였다. 국내에서는 SK플래닛이 자사의 플랫폼 기술과 SK텔레콤의 기지국 인프라를 활용하여 수도권 지역에 국지기상 관측망을 구축하였다. SK플래닛은 2013년 서울지역에 1km 간격으로 264개의 기상센서를 설치하고, 2014년 인천 경기지역에 3km 간격으로 825개의 기상센서를 추가 설치하여, 현재 1089개의 국지기상 관측망을 운용하고 있다. 관측에 사용한 센서는 우량계와 복합 기상센서로 강수량, 기온, 습도, 바람, 기압을 측정한다. 관측된 자료는 데이터로거에서 기상청의 자료처리 표준규격에 따라 처리한 후 M2M 모뎀을 통해 1분마다 서버로 전송한다. 전송된 자료는 기상정보 플랫폼의 수집 서버에서 프로토콜 변환 후 원본자료 DB에 저장하고, 실시간 품질관리를 마친 후 품질관리 자료 DB에 저장한다. 관측 지점의 기본정보 및 작업이력은 메타데이터 DB에 저장되고 관리자 페이지를 통해 조회 및 수정 된다. 관측 자료의 품질 보증은 제조사의 센서 Calibration부터 서비스 모니터링 까지 각 단계별로 체계적인 품질관리를 통해 이루어진다. 품질관리를 마친 국지기상 관측 데이터는 응용프로그램 개발자가 편리하게 사용할 수 있는 API(Application Programming Interface)형태로 제공된다. 2013년 여름부터 수집된 1~3km 해상도의 SK플래닛 국지기상 관측 자료를 통해 그 동안 정량적으로 확인하지 못한 국지성 호우 시의 강수량 편차에 대해 알 수 있었다. 2014년 7월 31일 양평지역에 내린 국지성 호우는 시간당 최대 90mm 이상의 비가 내린 사례로, 귀여리 관측소(SK 플래닛)에 시간당 93.1mm가 내리는 동안 퇴촌 관측소(기상청)에는 17.5mm의 비가 내려, 두 관측지점 간 거리가 3.4km 임에도 불구하고 시간당 75mm 이상의 강수량 차이를 보였다. 앞으로 SK플래닛의 국지기상 관측 자료가 국지성 호우의 조기 경보 및 예측 정확도 향상에 활용되어 재난으로부터 국민의 생명과 재산을 지키는데 많은 도움이 되기를 기대한다.

  • PDF

Building an SNS Crawling System Using Python (Python을 이용한 SNS 크롤링 시스템 구축)

  • Lee, Jong-Hwa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.5
    • /
    • pp.61-76
    • /
    • 2018
  • Everything is coming into the world of network where modern people are living. The Internet of Things that attach sensors to objects allows real-time data transfer to and from the network. Mobile devices, essential for modern humans, play an important role in keeping all traces of everyday life in real time. Through the social network services, information acquisition activities and communication activities are left in a huge network in real time. From the business point of view, customer needs analysis begins with SNS data. In this research, we want to build an automatic collection system of SNS contents of web environment in real time using Python. We want to help customers' needs analysis through the typical data collection system of Instagram, Twitter, and YouTube, which has a large number of users worldwide. It is stored in database through the exploitation process and NLP process by using the virtual web browser in the Python web server environment. According to the results of this study, we want to conduct service through the site, the desired data is automatically collected by the search function and the netizen's response can be confirmed in real time. Through time series data analysis. Also, since the search was performed within 5 seconds of the execution result, the advantage of the proposed algorithm is confirmed.

A Study on the Anomaly Prediction System of Drone Using Big Data (빅데이터를 활용한 드론의 이상 예측시스템 연구)

  • Lee, Yang-Kyoo;Hong, Jun-Ki;Hong, Sung-Chan
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.27-37
    • /
    • 2020
  • Recently, big data is rapidly emerging as a core technology in the 4th industrial revolution. Further, the utilization and the demand of drones are continuously increasing with the development of the 4th industrial revolution. However, as the drones usage increases, the risk of drones falling increases. Drones always have a risk of being able to fall easily even with small problems due to its simple structure. In this paper, in order to predict the risk of drone fall and to prevent the fall, ESC (Electronic Speed Control) is attached integrally with the drone's driving motor and the acceleration sensor is stored to collect the vibration data in real time. By processing and monitoring the data in real time and analyzing the data through big data obtained in such a situation using a Fast Fourier Transform (FFT) algorithm, we proposed a prediction system that minimizes the risk of drone fall by analyzing big data collected from drones.

Development of Gas Turbine Data Acquisition and Monitoring System based on LabVIEW (LabVIEW 기반의 가스터빈 데이터취득 및 모니터링 시스템 개발)

  • Kang Feel-Soon;Cha Dong-Jin;Chung Jae-Hwa;Seo Seok-Bin;Ahn Dal-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.270-273
    • /
    • 2006
  • This paper presents a gas turbine data acquisition and monitoring system using a LabVIEW programming. The developed real-time monitoring system entitled a C-Tune DAS plays an important role to make an analysis of the real-time operation of the gas turbine under maintenance. The LabVIEW based software is divided into three parts according to their original functions; Data acquisition, Data analysis and display, and Data storage. The data acquisition part receives data from a PMS (Plant Management System) server and two cFPs (Compact-Field Point). To verify the validity of the developed system, it is applied to gas turbines in the combined cycle power plant in Korea.

  • PDF

Real-time Processing of Manufacturing Facility Data based on Big Data for Smart-Factory (스마트팩토리를 위한 빅데이터 기반 실시간 제조설비 데이터 처리)

  • Hwang, Seung-Yeon;Shin, Dong-Jin;Kwak, Kwang-Jin;Kim, Jeong-Joon;Park, Jeong-Min
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.219-227
    • /
    • 2019
  • Manufacturing methods have been changed from labor-intensive methods to technological intensive methods centered on manufacturing facilities. As manufacturing facilities replace human labour, the importance of monitoring and managing manufacturing facilities is emphasized. In addition, Big Data technology has recently emerged as an important technology to discover new value from limited data. Therefore, changes in manufacturing industries have increased the need for smart factory that combines IoT, information and communication technologies, sensor data, and big data. In this paper, we present strategies for existing domestic manufacturing factory to becom big data based smart-factory through technologies for distributed storage and processing of manufacturing facility data in MongoDB in real time and visualization using R programming.

A Study on the Application Model of AI Convergence Services Using CCTV Video for the Advancement of Retail Marketing (리테일 마케팅 고도화를 위한 CCTV 영상 데이터 기반의 AI 융합 응용 서비스 활용 모델 연구)

  • Kim, Jong-Yul;Kim, Hyuk-Jung
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.197-205
    • /
    • 2021
  • Recently, the retail industry has been increasingly demanding information technology convergence and utilization to respond to various external environmental threats such as COVID-19 and to be competitive using AI technologies, but there is a very lack of research and application services. This study is a CCTV video data-driven AI application case study, using CCTV image data collection in retail space, object detection and tracking AI model, time series database to store real-time tracked objects and tracking data, heatmap to analyze congestion and interest in retail space, social access zone.We present the orientation and verify its usability in the direction designed through practical implementation.