• Title/Summary/Keyword: 실물규모구조물

Search Result 13, Processing Time 0.022 seconds

Forced Vibration Test of a Real-Scale Structure and Design of HMD Controllers for Simulating Earthquake Response (실물 크기 구조물의 강제진동실험 및 지진응답 모사를 위한 HMD제어기 설계)

  • Lee, Sang-Hyun;Park, Eun-Churn;Youn, Kyung-Jo;Lee, Sung-Kyung;Yu, Eun-Jong;Min, Kyung-Won;Chung, Lan;Min, Jeong-Ki;Kim, Young-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.103-114
    • /
    • 2006
  • Forced vibration testing is important for correlating the mathematical model of a structure with the real one and for evaluating the performance of the real structure. There exist various techniques available for evaluating the seismic performance using dynamic and static measurements. In this paper, full scale forced vibration tests simulating earthquake response are implemented by using a hybrid mass damper. The finite element (FE) model of the structure was analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. Pseudo-earthquake excitation tests showed that HMD induced floor responses coincided with the earthquake induced ones which were numerically calculated based on the updated FE model.

Experimental Study on the Suppression Performance of Sprinkler Systems in Rack-type Warehouses (랙크식 물류창고의 스프링클러설비 소화성능에 관한 실험연구)

  • Choi, Ki-Ok;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.44-50
    • /
    • 2019
  • In rack-type warehouses, it is difficult to extinguish fires effectively using sprinkler systems because high fire load commodities are stacked vertically and densely. In this study, an actual size rack structure was constructed and the effectiveness of the fire extinguished by the sprinkler system was confirmed through fire tests according to the type and arrangement of the sprinkler head in the rack structure. Through this study, to effectively suppress fires in rack-type warehouses, it is necessary to use sprinkler heads with a volume of more than 115 LPM and sprinkler heads need to be installed at the diagonal corner positions of the commodities of each rack.

Durability Evaluation of Hybrid Expansion Joint System with Improved Replacement (보수성을 개선한 복합형 신축이음장치(HRS) 내구성 평가)

  • Jung Woo Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2023
  • Durability was evaluated by performing a full-scale vertical load fatigue test and a wheel load performance test on the HRS, which reduces the replacement time of the existing expansion joint and improves serviceability to allow partial replacement by lane. As a result of the vertical load fatigue test, the maximum stress of the rail-type expansion joint is 170 MPa, which is about 47.8% of the yield strength of the HRS expansion joint rail 355 MPa. The vertical load fatigue test of the HRS expansion joint with improved serviceability set the size and load of the load plate according to the road bridge design standards, did not show any fracture behavior in the vertical load fatigue test and the wheel load performance test 2 million times, and its durability and safety were verified.

Experimental Study for the Structural Stability of Permanent Anchor (영구 앵커의 구조적 안정성에 관한 실험적 연구)

  • Yoo, Nam-Jae;Park, Byung-Soo;Park, Chan-Deok;Hong, Young-Gil;Lee, Jong-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.87-98
    • /
    • 2006
  • This paper is an experimental result of performing the prototype of anchor tests in field to investigate the ultimate uplifting capacity of permanent anchor embedded in weathered rock. For prototype of actual anchor test in situ, four grouted anchors having various anchor lengths were installed in field and their ultimate uplift capacities were obtained by analyzing test results of load-displacement curves obtained from field uplift tests. On the other hand, creep tests, applying pull-out loading at the stage of the maximum loading during 15 minutes, were performed to investigate ultimate resisting capacity of anchor so that the values of creep rate at the ultimate loading conditions were evaluated. Dial gauges were installed on the surface of ground to measure the vertical displacement distribution from the anchor so that the failure mechanism of permanent anchor embedded in weathered rock and failure boundary of ground during application of loading were evaluated.

Dynamic Test of a Full Scale Model of Five-Story Stone Pagoda of Sang-Gye-Sa (쌍계사 오층석탑 실물 크기 모델의 동적 거동 시험)

  • Kim, Jae-Kwan;Ryu, Hyeuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.51-66
    • /
    • 2001
  • There occurred a moderate size earthquake of Magnitude 5 in Whagae-Myun, Hadong-GUn, Kyongsangnam-Do on July 4, 1936. It caused severe damage to the buildings and other structures in Sang-Gye-Sa, a Buddhist Temple. The top component of a five-story stone pagoda was tipped over and fell down to the ground during the earthquake. In order to have accurate and quantitative estimate of the peak acceleration level of that earthquake, a full-scale model was constructed through rigorous verification process. The complete model was mounted on a shaking table and subjected to the dynamic tests. Two kinds of tests were performed: exploratory test and fragility test. The exploratory test was done with low acceleration level. In the fragility test, the behavior of the model was carefully monitored while increasing the acceleration level. The construction details of the model are provided and test procedures are reported. Finally important test results are presented and their implications are discussed.

  • PDF

Shear Performance of Full-scale Reinforced Concrete Beams with Recycled Fine Aggregates (순환잔골재의 치환율에 따른 철근콘크리트 보의 전단성능)

  • Ji, Sang-Kyu;Song, Seon-Hwa;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.205-208
    • /
    • 2008
  • Using the recycled aggregate can reduces the landfill space, the demand for natural raw material for new construction. Some investigations have been carried out to study the shear behaviors of RC beams with recycled aggregates. But these have some limitation due to the use of low quality recycled aggregates and small-scale specimens in the laboratory. In this study, four full-scaled RC beams were tested to evaluate the effects of replacement level (0,30, 60, and 100%) of recycled fine aggregate on shear behavior of RC beams. The results showed that the beams with recycled fine aggregates show similar crack pattern and failure mode compared with the beam with natural aggregate. Also, the beams with recycled fine aggregates present the similar shear strength except the one with the replacement level of 100% recycled fine aggregates. Shear strength were compared with the provisions in current code (KCI2007) and the equation proposed by Zsutty. The KCI equations were conservative and subsequently can be used for the shear design of recycled aggregate concrete beam.

  • PDF

An Experiment of Structural Performance of Expansion Joint with Rotation Finger (가변형 핑거 조인트를 가지는 신축이음장치의 구조 성능 실험)

  • Yoo, Sung won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.170-175
    • /
    • 2018
  • For the seismic performance, it is necessary to prevent the destruction of the expansion joint device due to the appropriate deformation of the expansion joint device due to the seismic force. Recently, the hinge is installed on the fingering of the expansion joint device in Korea, New products are being developed. In this paper, we have experimentally evaluated the real scale resistance of the expansion joints with rotational finger joints against load at right angle to the bridge axis. Experimental results show that the maximum horizontal displacement is about 21.1mm for conventional stretch joints and 51.00mm for seismic stretch joints. It is presumed that the existing expansion joint test specimen is resistant to the load in a direction perpendicular to the throat axis, and then the bending and shear deformation of the finger are excessively generated and the fracture phenomenon is likely to occur. On the other hand, in the case of the seismic expansion joint, the deformation of the load due to the load is absorbed by the hinge of the finger with respect to the load in the direction perpendicular to the throat, so that only horizontal deformation in the direction of load action.

Verification on Debris Reduction Ability of the Sweeper by Real Scale Experiment (실규모 실험검증을 통한 스위퍼의 유송잡물 저감능력 검토)

  • Kim, Sung-Joong;Jung, Do-Joon;Kang, Joon-Gu;Yeo, Hong-Koo;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.34-44
    • /
    • 2016
  • This study is an experimental study about a facility for preventing the accumulation of floating debris at a bridge by flooding at a small river. Generally, structures installed at a small river are damaged frequently by floating debris during typhoons or localized rainfall events. On the other hand, there is no method available for preventing such damage. The facilities used in other countries to prevent such damage by the accumulation of floating debris include debris fins, deflectors, and sweeper. Among these facilities, the present study was conducted with a sweeper to investigate the damage-reducing capability through a real-scale accumulation experiment. A sweeper was installed in front of a bridge to bypass floating debris by self-rotation so that the floating debris may not be accumulate at the bridge. A small bridge model was prepared in a real-scale for the real-scale experiment. The accumulation reducing capability was compared through an accumulation experiment before and after the sweeper installation depending on the length of the debris and flow conditions. The result showed that the accumulation rate increased with increasing length of the debris or decreasing flow rate. The installation of a sweeper decreased the debris accumulation rate by a minimum of 55% to a maximum of 88% compared to the case without an installed sweeper. The result of the present study showed that the installation of a sweeper at a small river having a high potential of generating floating debris may help secure the stability of a bridge in the case of floating debris accumulation.

Experimental study on the suppression of fire fighting by using Compressed Air Foam system (압축공기포(Compressed Air Foam) 소화시스템을 이용한 구난역 열차 화재 진압에 관한 실험적 연구)

  • Park, Byoung-Jik;Shin, Hyun-Jun;Yoo, Yong-Ho;Park, Jin-Ouk;Kim, Hwi-Seong;Kim, Yang-Kyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.423-432
    • /
    • 2018
  • Since the Daegu subway fire accident, people's perception of safety has increased, and all materials inside the train have been changed to incombustible materials. However, there is still a lack of development of fire extinguishing systems. Train components are mostly made of steel plates, and therefore it is very difficult to extinguish the train fire by using general fire extinguishing equipment. In this regard, this paper investigated rapid and easy methods of extinguishing the train fire by using compressed air foam systems through full-scale fire tests. To extinguish the fire of train at rescue station, window breakers were used to quickly destroy the train windows, and the compressed air foam system was inserted inside the train. As a result, the train windows were destroyed in 5 seconds, and the 11.88-MW fire was put out in 30 seconds by the compressed air foam discharged from the compressed air foam system inserted inside the train. For the future work, there is a need for further experimental studies to prevent the spread of fire and protect tunnel structures with the use of compressed air foam systems.

Experimental Study on the Temperature Dependency of Full Scale Low Hardness Lead Rubber Bearing (Full-scale 저경도 납면진받침의 온도의존성에 대한 실험적 연구)

  • Park, Jin Young;Jang, Kwang-Seok;Lee, Hong-Pyo;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.533-540
    • /
    • 2012
  • Rubber laminated bearings with lead core are highly affected by changes in temperature because key materials which are rubber and lead have temperature dependencies. In this study, two full scale LRB(D800, S=5) are manufactured and temperature dependency tests on shear properties are accomplished. The shear properties at the 3rd cycle are used at $-10^{\circ}C$, $0^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$ respectively. The double shear configuration, simultaneously testing two pieces, is applied for compression shear test in order to minimize the friction effects due to the test machine, described in ISO 22762-1:2010. Characteristic strength, post-yield stiffness, effective stiffness, equivalent damping ratio are estimated and presented coefficient due to the temperature changes.