DOI QR코드

DOI QR Code

An Experiment of Structural Performance of Expansion Joint with Rotation Finger

가변형 핑거 조인트를 가지는 신축이음장치의 구조 성능 실험

  • Yoo, Sung won (Department of Civil and Environmental Engineering, Gachon University)
  • 유성원 (가천대학교 토목환경공학과)
  • Received : 2018.10.08
  • Accepted : 2018.10.15
  • Published : 2018.11.01

Abstract

For the seismic performance, it is necessary to prevent the destruction of the expansion joint device due to the appropriate deformation of the expansion joint device due to the seismic force. Recently, the hinge is installed on the fingering of the expansion joint device in Korea, New products are being developed. In this paper, we have experimentally evaluated the real scale resistance of the expansion joints with rotational finger joints against load at right angle to the bridge axis. Experimental results show that the maximum horizontal displacement is about 21.1mm for conventional stretch joints and 51.00mm for seismic stretch joints. It is presumed that the existing expansion joint test specimen is resistant to the load in a direction perpendicular to the throat axis, and then the bending and shear deformation of the finger are excessively generated and the fracture phenomenon is likely to occur. On the other hand, in the case of the seismic expansion joint, the deformation of the load due to the load is absorbed by the hinge of the finger with respect to the load in the direction perpendicular to the throat, so that only horizontal deformation in the direction of load action.

내진 성능 학보를 위해서는 신축이음장치가 지진력에 대하여 적절한 변형이 발생하여 신축이음장치의 파괴를 방지하여야 하는데 최근에 국내에서 신축이음장치의 핑거부에 힌지를 설치하여 교축방향의 지진력에 대한 변위 저항성을 확보한 신제품이 개발되고 있다. 이에 본 논문에서는 가변형 핑거 조인트를 가지는 신축이음장치에 대하여 실물규모의 교축직각방향 하중에 대한 저항성을 실험적으로 평가하였다. 실험결과, 최대 수평변위는 기존 신축이음 실험체의 경우 약 21.1mm, 내진 신축이음 실험체의 경우 51.00mm로 나타났으며, 기존제품은 추가적으로 16.5mm의 솟음이 발생되었다. 기존 신축이음 실험체는 어느 정도의 교축직각 방향의 하중에 대하여 저항한 후, 핑거의 휨 및 전단 변형이 과도하게 발생되며 파단 현상이 발생할 가능성이 있을 것으로 추정된다. 반면에 내진 신축이음 실험체의 경우, 교축 직각방향의 하중에 대하여 하중에 대한 변형을 핑거의 힌지가 흡수하여 신축이음장치 및 상부구조에 응력을 발생시키지 않고 다만 하중 작용방향으로의 수평 변형만 발생시킬 것으로 예상된다.

Keywords

References

  1. AASHTO (2004), AASHTO LRFD Bridge Design Specifications, 120-125.
  2. Dexter ,R.L, Conner ,RJ. ,and Kaczinski ,M.R. (1997), Fatigue Design of Modular Bridge Expansion Joints, National Research Board, NCHRP Report 402.
  3. Jung C. M. et. al (1993), A Study on Bridge Expansion Joints, Korea Highway Company, 22-24.
  4. J. S. Na, T. Lee, E. S. Han, W. K. Sung, J. S. Lee (2017), Fatigue Durability Evaluation of Refraction Expansion Joints, Journal of the Korea institute for Structural Maintenance Inspection, 21(6), 10-15. https://doi.org/10.11112/jksmi.2017.21.6.010
  5. S. S. Park, Kwon S. J., M. B. Yoon (2012), Engineering Properties of Sewage Polymer Concrete Culvert, Journal of the Korea institute for Structural Maintenance Inspection, 16(6), 9-17. https://doi.org/10.11112/jksmi.2012.16.6.009
  6. S. W. Yoo, I. H. Yang (2016), Structural Capacity of Water Channel Fabricated of Blast Furnace Slag Concrete, Journal of the Korean Recycled Construction Resources Institute, 4(4), 446-453. https://doi.org/10.14190/JRCR.2016.4.4.446
  7. Y. H. Choi, H. C. Lee, J. K. Kim (2018), Seismic Performance Assessment of a Composite Modular System Considering Stiffness of Connections, Journal of the Korea institute for Structural Maintenance Inspection, 22(2) 105-114. https://doi.org/10.11112/JKSMI.2018.22.2.105
  8. Y. G. Choi, I. Y. Jang (2018), A Study of Structural Behavior Analysis of Inegral and Semi-Integral Hybrid Slab Bridge, Journal of the Korea institute for Structural Maintenance Inspection, 22(1), 123-128. https://doi.org/10.11112/JKSMI.2018.22.1.123